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Executive Summary 

The U.S. Department of Transportation Office of the Assistant Secretary for Research 

and Technology (USDOT/OST-R) and the Georgia Department of Transportation 

(GDOT) co-sponsored this research project to validate the application of commercial 

remote sensing and spatial information (CRS&SI) technology.  GDOT supported the 

validation of intelligent transportation asset inventory, including asphalt pavement crack 

classification, concrete pavement distress detection, and pavement marking 

retroreflectivity condition assessment using an intelligent Remote Sensing and GIS-based 

Asset Management System (RS-GAMS).  USDOT and Georgia Institute of Technology 

(Georgia Tech), through cost sharing, sponsored the integration and calibration of 

CRS&SI technology, the Georgia Tech Sensing Vehicle (GTSV) that can be operated 

non-destructively at highway speed.  

1. Research Focuses 

The following research focuses address GDOT’s and other transportation agencies’ needs 

regarding the use of CRS&SI technologies to improve the data collection and condition 

assessment of the two types of transportation assets: pavements and pavement markings. 

 Automatic asphalt pavement crack classification  

 Concrete pavement distress detection 

 Pavement marking condition assessment 

 Long-term monitoring of pavement distresses, including cracking and rutting 
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2. Research Outcome and Major Findings 

The following conclusions are based on the four research focuses:  

 Automatic asphalt pavement crack classification 

This research validated the performance of an automatic crack classification 

algorithm that uses 3D line laser imaging (named “3D laser” hereafter) data and was 

previously developed by the PI.  The algorithm is based on a multi-scale crack 

fundamental element (CFE) model and uses crack detection results, i.e. crack maps, 

as inputs, which have been validated in RS-GAMS Phase 1.  The classification of the 

two most commonly occurring cracks, load cracking and block cracking, defined in 

GDOT’s pavement distress survey manual, Pavement Condition Evaluation System 

(PACES), were implemented, tested, and validated.  The promising results 

demonstrate that the algorithm is capable of transforming raw sensing data and 

detected crack maps into useful decision-support information, including crack types, 

severity levels, and extents. 

In the test on 1,069 pavement 3D laser images (each image covers, approximately, a 

5-meter long and 4-meter wide section of pavement), GDOT pavement engineers 

visually reviewed each image and established the ground truth.  Based on the 

comparison between the ground truth and the automatically classified results, the 

algorithm showed an accuracy of 92.2% when classifying load cracking at four 

severity levels and 98.1% when classifying block cracking at three severity levels.  

Another test was conducted on ten 100-ft test sections that were selected on State 

Route (SR) 236, SR 275, and SR 67 in Georgia.  In each test section, GDOT 
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pavement engineers visually identified the crack types, severity levels, and extents in 

the field that were used as ground truth.  Among ten test sections, four were surveyed 

by accurate measurements using a measuring wheel, while the other six sections were 

surveyed by visual estimation following GDOT’s current survey practices.  Then, 

comparison was made on deducts derived from the automatic crack classification and 

the field visual survey.  For the wheel-measured sections, the average absolute 

difference of total deducts was 3.25 out of 100 (a pavement rating is between 0 and 

100), and for the visually-estimated sections, the average absolute difference was 5 

out of 100.  Both differences were within the error tolerance based on GDOT’s 

current practice (5 out of 100).   

The validation results show that the use of 3D laser data and the corresponding 

algorithms could improve the productivity and efficiency of collecting pavement 

distress information.  Moreover, the fine-grained sensing data also opened the 

opportunity to improve existing pavement management by adding more detailed 

decision-support information that could not be acquired previously.       

 Concrete pavement distress detection 

This study validated the detection and measurements of various concrete pavement 

distresses (including cracking, faulting, spalling, and shoulder joint distresses) using 

pavement 3D laser data.  The validation results demonstrate the potential for using 3D 

laser data for automatically detecting distresses in concrete pavements.  The test sites 

were selected on interstate highways I-16 and I-516. 
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The validation of concrete pavement cracking detection using 3D laser data showed 

acceptable performance.  The automatic crack detection results were compared to the 

manually digitized ground truth using a buffered Hausdorff scoring method that was 

developed in RS-GAMS Phase 1.  The results showed that detection of cracks on I-

516 (mainly longitudinal cracks) is accurate and robust; however, the detection of 

cracks on I-16 (mainly transverse cracks) is not as good as on I-516.  The larger data 

acquisition interval in the driving direction, which was about 5 mm, might be the 

reason that some transverse cracks cannot be captured by 3D laser data.  In 

comparison, the transverse resolution is about 1 mm, which can better capture the 

longitudinal cracks.  Limited to the laser data resolution, hairline cracks (thinner than 

2 mm) are still challenging for automatic detection.    

The validation of concrete joint faulting measurement showed that it is very feasible 

to use 3D laser data for collecting faulting data at highway speed.  Using the 

regression-based method, the automatic faulting measurements were consistent with 

manually measured ground truth using the Georgia Faultmeter in both the well-

controlled lab test and the field test.  

The accuracy of automatic spalling detection varied for different sizes of spalling.  

Spalling with widths greater than 90 mm can be successfully detected; the detection 

accuracy was reduced, but still acceptable for widths between 50 and 90 mm, while 

spalling was hard to detect when the width was less than 50 mm.  Though some small 

spallings were not successfully detected, they can be clearly observed on the 3D laser 

data.  Thus, the automatic detection algorithm could be further improved to handle 

such cases. 
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Since there is no dedicated application that is commercially available for shoulder 

joint distress detection, we explored the feasibility of using an automatic spalling 

detection algorithm to detect shoulder joint distress. The larger extent and depth of 

shoulder joint distress make them distinctive on laser range data and easier to detect. 

On the selected representative cases, the automatic detection results were visually 

consistent with field observation. However, it should be noted that due to the 

transverse coverage of the current pavement surface laser data (about 4 meters), the 

shoulder area might be missed when the vehicle wanders. In addition, a specific 

shoulder joint distress detection algorithm is needed to further ensure an accurate and 

robust detection. 

 Pavement marking retroreflectivity condition assessment 

This research was to establish the correlation between the retroreflectivity measured 

by handheld retroreflectometer and the retro-intensity acquired from a LiDAR point 

cloud.  Establishing a reliable correlation is the key step for assessing pavement 

marking retroreflectivity conditions using a mobile LiDAR.  In this preliminary 

study, thermoplastic and waterborne paint were selected, which are the most 

commonly used pavement marking materials.  Test sites were selected on Ferst Drive, 

Hemphill Avenue, and 17th Street on/near the Georgia Tech campus. 

It was discovered that the retro-intensity values acquired from mobile LiDAR are not 

sensitive to ambient temperatures and have an average standard deviation less than 

0.0041. The retro-intensity acquired from mobile LiDAR held good repeatability on 
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the tested thermoplastic and waterborne materials with an average standard deviation 

of 0.0044.  

There was an exponential correlation between retroreflectivity and retro-intensity 

with an R-square of 0.9525 for thermoplastic and 0.9267 for waterborne paint.  The 

correlation between retroreflectivity and retro-intensity might be sensitive to different 

bead formulas of the pavement marking material.  Separate correlation curves might 

be needed not only for different pavement marking material category, e.g. 

thermoplastic, waterborne, etc., but also for different bead formulas in the same 

material category.  Based on the correlation results, a preliminary retro-intensity 

threshold corresponding to the minimum retroreflectivity (100 mcd/m2/lux) defined in 

the MUTCD could be defined as 0.4263, with a 95% confidence interval ranging 

from 0.4035 to 0.4505 for thermoplastic and 0.3521, with a 95% confidence interval 

ranging from 0.2973 to 0.4264 for waterborne materials.  Using the established 

correlations, a mobile LiDAR-based pavement marking retroreflectivity condition 

assessment method can be further developed. 

 Long-term monitoring of crack deterioration 

This research project studied pavement deterioration behavior using long-term 

monitoring 3D laser data over time.  A detailed level representation of crack 

information, (including length, width, orientation/direction, position/location, 

intensity, pattern, etc., which were derived by using 3D laser data, crack detection 

algorithms, and the multi-scale CFE model) was applied to study the temporal crack 

deterioration behavior.  The results showed that it could potentially be used to support 
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the following applications: 1) the fundamental study of pavement mechanistic and 

pavement deterioration behavior, 2) validation of current pavement design methods 

and development of new design concepts and methods, 3) determination of adequate 

treatment methods and strategies based on pavement distress characteristics and their 

deterioration behavior, 4) development of accurate and reliable forecasting models, 

and 5) development of cost-effective pavement management operations/practices, 

such as intelligent crack sealing planning. Compared to the frequently used lab 

simulation data or well-controlled experimental data (e.g. AASHO road test), the in-

service pavement data used in this study represents true crack deterioration 

mechanisms and enables the ability to explicitly connect pavement condition 

deterioration with the real-world factors that cause it. While it is not feasible to 

comprehensively cover the entire field of research, this study is believed to be a 

transformative, concrete, first step in changing the way researchers have approached 

sensing-based infrastructure condition monitoring and risk assessment. 

 Long-term monitoring of rutting deterioration 

This research characterized the 3D rut shape and analyzed its deterioration behaviors 

using multiple scales and long-term pavement 3D laser data.  Rut parameters, 

including transverse profile-based parameters, longitudinal parameters, and temporal 

parameters, were defined and proposed.  Descriptive statistics and 2D and 3D 

visualizations were used to analyze the deterioration behaviors of rutting.   

Transverse profile-based rut parameters, including rut depth, rut cross-sectional area, 

percent deformation, and total absolute distortion, show good correlation among each 
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other, providing consistent information about the conditions of ruts.  Longitudinal 

parameters also showed similar trends as the aforementioned parameters, indicating 

that ruts not only grow in depth and area but also grow longitudinally in length and 

volume.  Temporal parameters provide a direct means to quantify the deterioration of 

rutting.  These parameters can be very useful, especially when the rate of 

deterioration is high.  The multi-scale analysis results show that seasonal 

variations can have appreciable effect on the deterioration of ruts.  Temporal 

parameters derived from short periods (e.g., a few months), can be affected by 

seasonal variations.  This finding suggests that, for different deterioration analysis 

applications, different analysis periods should be applied in order to obtain consistent 

results.  The comparison among three different routes showed that traffic and 

roadway characteristics also play an important role in the deterioration of ruts.  Other 

factors, such as the age and design of the pavement, can also contribute to the actual 

deterioration behavior of ruts.  2D and 3D visualization of ruts at the individual level 

shows the importance and benefits of having registered long-term 3D pavement data.  

Details of how ruts deteriorate, e.g., the development of dual-wheel shaped ruts and 

the growth in rut length and volume, were able to be identified in the selected 

sections.  This information can further support the diagnosis of rutting and inform 

data-driven maintenance decisions.   

3. Recommendations for Future Research 

The following suggest the future research and implementation:  
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 With the promising results from the automatic asphalt pavement crack classification 

for load cracking and block cracking, it is recommended that the automatic 

classification be extended to other types of distresses as defined in GDOT pavement 

distress manual.  In addition, the algorithms can be easily extended to other crack 

survey protocols used by different state highway agencies because of the flexibility 

provided by the crack CFE model.      

 The validation results for automatic concrete pavement faulting measurements 

showed very good consistency with manual measurements using a Georgia 

Faultmeter.  A large-scale pilot study with a state DOT, e.g., GDOT, is suggested to 

automate the network-level faulting measurements.  This can significantly improve 

the productivity, data accuracy, and data coverage. 

 The concrete pavement crack detection shows promising results.  However, it is 

difficult to detect hairline, transverse cracks due to the relatively coarser data 

resolution in the driving direction using the current 3D laser device.  Thus, to capture 

hairline cracks, the data capture frequency and resolution of a 3D laser device needs 

to be further improved.  In addition, to automate the crack evaluation for concrete 

pavements, automatic crack classification algorithms, which can be based on the 

work we have done for asphalt pavements, need to be developed.  

 New algorithms need to be developed because the automatic detection for concrete 

spalling doesn’t work well on those with widths less than 50 mm.  In addition, new 

algorithms are needed for automatic shoulder joint distress detection.   

 The pavement marking validation results indicate that pavement marking 

retroreflectivity conditions could be measured and evaluated using mobile LiDAR 
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that can be operated at highway speed.  However, the testing samples in this research 

project are limited.  It is suggested that large-scale testing on more marking materials 

be conducted before it is implemented. 
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Chapter 1  Introduction 

1. Background and Research Need 

Roadway asset inventory and condition assessment are critical for making data-driven, 

informed decisions on cost-effective management of roadway assets.  However, the 

commonly used manual data collection is labor-intensive, time-consuming, costly, 

dangerous, and error-prone. There is an urgent need to improve the reliability and 

productivity of roadway asset inventory and condition assessment.  The Commercial 

Remote Sensing and Spatial Information (CRS&SI) technologies, including 3D line laser 

imaging (named “3D laser” hereafter), airborne and terrestrial Light Detection And 

Ranging (LiDAR), GPS/GIS, Inertial Measurement Unit (IMU), and image/signal 

processing, have dramatically advanced in the past few years.  There is great potential to 

validate the applications of these technologies to bring new capabilities to roadway asset 

management.  For this purpose, a research project, entitled “A Remote Sensing and GIS-

enabled Asset Management System (RS-GAMS) Phase 2,” was sponsored by the U. S. 

Department of Transportation Office of the Assistant Secretary for Research and 

Technology (USDOT/OST-R) and the Georgia Department of Transportation (GDOT).  

This project proposes integrating the aforementioned CRS&SI technologies into an 

intelligent sensing system, Georgia Tech Sensing Vehicle (GTSV), to bring new 

capabilities to roadway asset inventory, condition assessment, and management.  In the 

project, GDOT supported the validation of asphalt pavement crack classification, 

concrete distress detection, pavement marking retroreflectivity condition evaluation, and 

long-term pavement condition monitoring; the USDOT and the Georgia Institute of 
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Technology (Georgia Tech) shared the cost and sponsored the integration and calibration 

of CRS&SI technology, i.e., GTSV that can be operated non-destructively at highway 

speed.  

The technology developed in this project is an extension of the outcomes from RS-

GAMS Phase 1 (RP 10-08), which was sponsored by the USDOT/OST-R and GDOT.  

FIGURE 1.1 shows the architecture of RS-GAMS.  It includes the components of the 

sensing system, data processing and collection, data integration and management, and 

decision support.  New capabilities and functions for data collection, condition 

assessment, and decision support can then be developed under this system framework.  

RS-GAMS Phase 1 has established the preliminary framework and also uses two assets 

(sign and asphalt pavement), as shown in the light grey color in FIGURE 1.1, to 

demonstrate its capability. 

With the refinement of the integrated sensing system, new applications were developed 

and validated in the Phase 2 study, as shown in the dark grey color in FIGURE 1.1.  The 

applications of RS-GAMS in Phase 1 focused on the development and validation of 

CRS&SI technology on: (1) asphalt pavement rutting identification and measurement, (2) 

asphalt pavement crack detection and the performance evaluation of different pavement 

crack detection algorithms, (3) sign asset inventory, and (4) sign retroreflectivity 

condition assessment. 

RS-GAMS Phase 2 uses the same framework developed in Phase 1, but extends it to 

additional roadway assets, including concrete pavements, pavement markings, cross 

slopes, curves, and pavement widths that are important for transportation agencies’ 
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engineering practices.  RS-GAMS Phase 2, sponsored by GDOT, focuses on the 

following applications and their validations: a) asphalt pavement distress classification, 

b) concrete pavement distress detection, c) pavement marking retroreflectivity condition 

assessment, and d) long-term monitoring on pavement conditions and analysis. 

 

FIGURE 1.1: RS-GAMS architecture 

2. Research Objective 

The objective of this project is to integrate CRS&SI technologies, including emerging 3D 

laser, signal/image processing, and GPS/GIS technologies, into an intelligent sensing 

system to bring new capabilities to roadway asset inventory, condition assessment, and 
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management.  The developed sensing system can be used to improve the reliability and 

productivity of pavement distress detection/classification, pavement marking condition 

assessment, and inventory of pavement cross slopes, roadway curvatures, and pavement 

widths.  Project development steps are to (1) refine and calibrate the integrated sensing 

system, (2) test and validate the sensing system using real-world data, and (3) quantify 

the research benefits.   

3. Research Tasks 

The following research tasks address GDOT’s and other transportation agencies’ needs 

regarding the use of CRS&SI technologies to improve data collection, condition 

assessment, and management of two types of transportation assets: pavement and 

marking. 

 Validate asphalt pavement crack classification 

This research task validated the performance of an automatic crack classification 

algorithm (previously developed by the PI) using pavement surface laser data.  The 

algorithm is based on a multi-scale crack fundamental element (CFE) model and uses 

the crack detection results, which have been comprehensively validated in RS-GAMS 

Phase 1, as inputs.  The classification of two commonly occurring types of cracking, 

load cracking and block cracking, defined in GDOT’s pavement distress survey 

manual, Pavement Condition Evaluation System (PACES), were implemented, tested, 

and validated. 
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 Validate concrete pavement distress detection 

This research task validated the detection and measurements of various concrete 

pavement distresses, including cracking, faulting, spalling, and shoulder joint distress, 

using pavement surface laser data.  The test sites were selected on two interstate 

highways: I-16 and I-516. 

 

 Feasibility study of using mobile LiDAR for pavement marking retroreflectivity 

condition assessment 

This study focuses on evaluating the feasibility of using mobile LiDAR to perform 

pavement marking retroreflectivity condition assessment.  Thermoplastic and 

waterborne paint, the most commonly used pavement marking materials, were 

selected to conduct the feasibility study.  Test sites were selected on Ferst Drive, 

Hemphill Avenue, and 17th Street on/near the Georgia Tech campus. 

 Long-term monitoring of pavement distresses, including cracking and rutting 

This task includes the continuous long-term pavement condition monitoring after the 

completion of the US DOT project and after the completion of the tasks listed above.  

This task is crucial for applying the analyzed 3D laser profile data for the actual long-

term pavement performance, including cracking and rutting. The activities of this task 

include continuous monitoring of the pavement performance, data processing and 

analysis, and continuous refinement of the developed sensing technology. 
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4. Report Organization 

This report summarizes the results of the research project co-sponsored by USDOT and 

GDOT.  Though the results of validating data collection have been incorporated into the 

report for USDOT in consideration of completeness, the study of the long-term crack and 

rutting deterioration behavior were exclusively contained in this report for GDOT.   

This report is organized into eight chapters. Chapter 1 summarizes the research 

background, need, and approaches.  Chapter 2 presents the validation results for asphalt 

pavement crack classification. Chapter 3 presents validation results for concrete 

pavement distress detection. Chapter 4 presents the feasibility study of pavement marking 

retroreflectivity condition assessment. Chapter 5 presents the long-term deterioration of 

asphalt pavement cracks. Chapter 6 presents the deterioration of asphalt pavement rutting 

using long-term monitoring 3D laser data. Chapter 7 presents the implementation of the 

research results. Chapter 8 summarizes the conclusions and makes recommendations for 

future research. 
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Chapter 2 Validation of Automatic Asphalt Pavement Crack 

Classification 

This chapter presents the research results for validating the automatic crack classification 

for asphalt pavements. 

1. Introduction 

Pavement surface distress evaluation is an essential component of a pavement 

management system (PMS). Cracking, as one of the most common types of pavement 

distresses, is caused by constant traffic loading, asphalt aging, environmental impact, 

and/or improper structural design. Progressive cracking can weaken pavement structures 

because it allows water and other foreign objects into the base and accelerates pavement 

deterioration. The proper treatment of pavement cracks at the optimal timing is important 

for cost-effective pavement maintenance.  Many transportation agencies, including 

GDOT, have invested major resources in their pavement condition survey and evaluation 

procedures to enhance their decision-making capabilities.  

Traditionally, the collection of pavement crack data is usually done by visual inspection 

in the field. For example, in GDOT’s practice, pavement surveyors manually identify the 

presence, types, and severity levels of cracking, and then estimate/measure and record the 

extent of each crack type and severity level. Such a task is dangerous, subjective, costly, 

time-consuming, and labor-intensive. Therefore, automatic pavement cracking evaluation 

is gaining attention among transportation agencies and researchers. To transform the 

manual practice into an automatic procedure, at least two steps should be taken. Crack 
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detection is the first step in identifying the presence of pavement cracking from the 

collected pavement data and generate a crack map. Crack classification is the second step 

to automatically identify the types and severity levels from the detected crack map. 

Automatic crack detection using the emerging 3D laser technology has been validated in 

the RS-GAMS Phase 1 study. This study focuses on the validation of crack classification. 

An automatic crack classification and quantification method has been previously 

developed by the PI following the GDOT PACES distress protocol.  The objective of this 

research is to conduct a validation of the automatic crack classification and quantification 

using the crack map detected by using 3D laser data.  This chapter is organized as 

follows. After an introduction in Section 1, Section 2 summarizes the major findings 

through the literature review, including both current pavement distress protocols used in 

different federal and state transportation agencies and existing automatic crack 

classification algorithms. Section 3 presents the basic concept of the automatic crack 

classification and quantification method previously developed by the PI, followed by a 

comprehensive validation in Section 4. The GDOT PACES distress protocol is used as an 

example to demonstrate the performance of automatic asphalt crack classification. 

Section 5 presents a case study that applies the automatic crack classification and 

quantification method on the interstate highways, which are usually high-traffic-volume 

roadways and are challenging for the traditional manual survey; it visualizes the network-

level pavement condition to support decision-making. In the end, Section 6 summarizes 

the major findings. 
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2. Summary of Literature Review 

The literature review in this chapter covers two aspects.  First, the current pavement 

cracking survey practices from different federal and state transportation agencies are 

reviewed to better understand the objective of the automatic crack classification task and 

identify the similarities and differences between protocols. Then, the existing automatic 

crack classification algorithms are reviewed to understand the current status of automatic 

algorithm development and identify the gap between the current status and the desired 

crack classification objective.  The major findings from the perspective of agency’s 

current pavement distress protocols are summarized as follows: 

 Complexity: Transportation agencies usually have complicated and diverse crack 

definitions in their survey practice. The real-world distress protocols from 

transportation agencies usually involve human identification of complex crack 

patterns. Furthermore, for most protocols, multiple severity levels are defined 

under the same crack type, which also have an important impact on the pavement 

condition evaluation.  

 Subjectivity: Though the detailed crack definitions are described in the protocols, 

the crack patterns on the real pavement are still diverse. Even for experienced 

human surveyors, different engineers may provide different crack survey results 

on the same roadway section. An automatic crack classification and quantification 

method will overcome this issue by providing consistent results. 

 Diversity: Different protocols are developed for different purposes. For example, 

the GDOT PACES protocol has a causal-based crack definition so that the crack 

survey results can directly contribute to GDOT’s maintenance operations; the 



 

10 

 

Long-term Pavement Performance (LTPP) protocol is a research-oriented data 

collection and focuses more on how to precisely record every single crack on the 

road.  The data can be used for Mechanistic-Empirical Pavement Design Guide 

(MEPDG) calibration and validation. Different purposes lead to diverse crack 

definitions.  The diversity between protocols makes it difficult to transform the 

automatic crack classification algorithm from one protocol to another 

The major findings from the perspective of existing automatic crack classification 

algorithms are summarized as follows: 

 Preliminary outcomes: In terms of classification, most of the existing studies 

provide the following crack type outcomes: longitudinal, transverse, diagonal, 

alligator, and block, etc. Such an outcome format simplified the classification 

problem but limited the real-world implementation. It is hard to establish the 

correlation between these preliminary outcomes and the actual crack definitions 

used by transportation agencies. 

 Limited crack characteristics: Crack orientation and crack amount are two 

major characteristics that have been studied for automatic classification purposes. 

However, manual survey protocols require more characteristics, such as crack 

location, crack intersection, and possible polygon patterns.  

 No severity levels: The classification of different crack severity levels is explored 

in the existing literature. 

 Lack of flexibility: Most existing algorithms take the entire image as an input. 

The crack classification will be less effective when multiple crack types appear on 
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the same image, and this creates a significant challenge for accurate crack extent 

quantification. 

 Limited performance: Most studies only validate their methods on a small set of 

pavement images. Some large-scale studies have shown that current automatic 

crack classification and quantification survey results usually have a poor 

correlation with manual survey results. 

Overall, an automatic crack classification and quantification method remains a challenge 

from the perspective of practical implementation. Targeting the gap between the current 

status of automatic crack classification and the real-world crack survey protocols, the 

following section will present a multi-scale crack representation approach for crack 

classification. 

3. Multi-Scale Crack Representation for Crack Classification 

Crack pattern, together with other crack properties, is crucial for differentiating crack 

types and severity levels in transportation agencies’ pavement survey practices. The PI 

proposed a multi-scale CFE model in a previous study (Tsai & Jiang, 2012). This model 

topologically provides rich crack properties at three different scales (fundamental crack 

properties, aggregated crack properties, and clustered CFE geometrical properties) to 

support the development of an automatic crack classification method. It also standardizes 

crack performance measures for different transportation agencies and effectively deals 

with the diversity among different protocols. FIGURE 2.1 shows crack properties at three 

scales defined in the CFE model.  
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 FIGURE 2.1: Multi-scale crack properties from CFE model (Tsai & Jiang, 2012) 

The input for the multi-scale CFE model is the automated detected crack map. This crack 

map can be derived from either 2D or 3D data. Fundamental crack properties focus on 

each crack segment and describe the fundamental and physical properties of the cracks, 

including crack width, depth, length, etc.;  aggregated crack properties focus more on 

crack patterns inside the CFE and represent how cracks interact with each other, such as 

crack intersection, crack polygon, crack density, etc.; clustered CFE geometrical 

properties treat each CFE as a whole and describe its overall properties, including the 

CFE center, orientation, length, and width. From the bottom, the model represents the 

physical characteristics of pavement cracks; from the top, it tends to mimic the pavement 

engineers’ manual evaluation procedure in the field (from the macro to the micro level 

observation). When experienced pavement engineers conduct a condition survey, they do 

not usually measure the crack width and depth first; instead, they first identify a group of 

cracks that should be clustered together as one element (CFE); then, they look at the 
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crack pattern inside the CFE, and, finally, they measure the physical and fundamental 

crack properties. By clearly defining three scales of crack representation, the model can 

better incorporate both fundamental crack properties and human judgment. The method’s 

features are explained in the following aspects: 

 Consistency: The crack properties extracted through this model are independent 

from different pavement distress protocols. These crack properties, such as crack 

length, crack width, etc., are directly derived from the pavement data and the 

detected crack map and are not influenced by agencies’ protocols or survey 

practices. This consistency is critical as a standardized crack performance 

measure. 

 Flexibility: These properties can be easily transformed between different 

protocols to develop a corresponding crack classification method through certain 

rules and criteria (as shown in FIGURE 2.2).  

Based on this multi-scale crack representation concept, the PI further developed a crack 

classification and quantification method following the GDOT PACES distress protocol. 

The method itself doesn’t require specific data format or crack detection algorithms, but 

the accurate crack detection using 3D pavement surface data is expected to provide better 

input.  

4. Validation of the Automatic Crack Classification Method 

4.1 Validation objective 

The objective of this study is to validate the feasibility of automatic crack classification 

and quantification on asphalt pavements. To do so, we first validated the accuracy of 
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automatic crack classification method on a large and diverse set of pavement images and 

then compared the results from the automatic crack classification and quantification with 

the field survey results conducted by experienced pavement engineers. The GDOT 

PACES distress protocol was selected as an example to conduct the validation. Load 

cracking and block cracking (in GDOT, transverse cracking is also categorized as block 

cracking.  For clarity’s sake, we use block/transverse (B/T), hereafter), as two 

predominant asphalt pavement distresses in Georgia, are the focus of this study. The 

crack classification method can be easily extended to other crack-related distresses and 

protocols. 

 

FIGURE 2.2: Crack classification using extracted crack properties  

4.2 Experimental design 

Two series of experimental tests are conducted to fulfill the validation objective: 
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 An image-based validation test is conducted on State Route 236 / Lavista Road in 

Atlanta, Georgia, to validate the accuracy of crack classification. With help from 

GDOT pavement engineers, each pavement image was visually reviewed, and the 

presence and severity level of load cracking and B/T cracking manually labeled. 

In this test, we validated and conducted an image-by-image comparison between 

the automatic crack classification results and manual labels. 

 A site-based validation test was conducted to compare the results from automatic 

and manual field survey. It validated the accuracy of both crack classification and 

quantification. Following GDOT's current pavement surface condition survey 

practice, ten 100-ft pavement sections were selected on SR 236, SR 275, and SR 

67. Manual field surveys for load cracking and B/T cracking were conducted by 

GDOT liaison engineers. On the other hand, automatic crack evaluation also 

provides crack types, severity levels, and extents on these selected sections. The 

deduct values caused by load cracking and B/T cracking were calculated and 

compared between automatic and manual crack surveys. 

In this study, GTSV was used to collect the 3D laser data, and the crack detection was 

conducted using the analyzer software along with the system. The dimension of each 

pavement image is five meters long in the driving direction and approximately four 

meters wide in the transverse direction. A large and diverse dataset was prepared to cover 

diverse crack characteristics. 

 Crack type and severity levels: load cracking and B/T cracking were the focus of 

this test, and the experimental data covered all four severity levels for load 



 

16 

 

cracking and three severity levels for B/T cracking. A total of 2,335 load cracking 

images were prepared, including 881 images with no load cracking, 1,145 images 

with Severity Level 1, 158 images with Severity Level 2, 136 images with 

Severity Level 3, and 15 images with Severity Level 4. A total of 1,224 B/T 

cracking images were prepared, including 97 images with no B/T cracking, 1006 

images with Severity Level 1, 108 images with Severity Level 2, and 13 images 

with Severity Level 3. The crack type and severity level were labeled through 

manual review. 

 Combination of multiple crack types: in the current manual field survey, the 

combination of multiple crack types mostly introduced the inconsistency into the 

survey results. A large portion of experimental data were pavement images that 

contained both load cracking and B/T cracking in order to validate the 

performance of automatic crack classification on these cases.  

 Crack location: the cracks were randomly located in the left wheel path, right 

wheel path, and non-wheel path regions in the experimental data. The correct 

extraction of crack location was the basis for load and B/T cracking classification.  

 Crack pattern: as the severity level increased, the crack patterns in the 

experimental data changed gradually from a single crack line to intersected crack 

networks. The capability of interpreting complex and diverse crack patterns is 

another important aspect to be validated for the automatic crack classification.  

The following subsections will present the validation tests and results in detail.  
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4.3 Image-based validation 

An image-based validation was first conducted on State Route 236 / Lavista Road in 

Atlanta, Georgia. The selected project, which has an excessive amount of load cracking 

and B/T cracking, starts from Milepost 0 (Atlanta city limit) to about Milepost 6.8 (I-285 

bridge). The experimental data included 2,335 images for load cracking and 1,224 images 

for B/T cracking. The data from each crack type and severity level were randomly 

separated into two sets: 70% of the data were used for model training and calibration, 

while the rest, 30%, were used for testing.  

Performance of load cracking classification 
For load cracking, the training set consisted of 619 images of no load cracking, 798 

images of Severity Level 1, 108 images of Severity Level 2, 99 images of Severity Level 

3, and 11 images of Severity Level 4. The algorithm performance on the test set is shown 

in Table 2.1. 

As shown in Table 2.1, a total of 700 test images are selected. The algorithm has overall 

high classification accuracy at about 92.2%. From the perspective of recall (i.e. the ratio 

of correctly classified cases to total actual cases), a larger portion of Severity Level 2 was 

not correctly classified compared to other severity levels. From the perspective of 

precision (i.e. the ratio of correctly classified cases to total classified cases), the 

classification for Severity Level 2 was quite low, which was mainly due to the clear 

difference between the sample sizes. Some representative cases for load cracking and 

their automatic classification and quantification outcomes are shown in FIGURE 2.3. 
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Table 2.1: Performance of Load Cracking Classification 

 
Classified Severity Level   

None Level 1 Level 2 Level 3 Level 4 Total Recall (%) 

Actual 
Severity 

Level 

None 247 15 0 0 0 262 94.3 

Level 1 10 317 20 0 0 347 91.4 

Level 2 0 6 42 2 0 50 84.0 

Level 3  0 0 2 35 0 37 94.6 

Level 4 0 0 0 0 4 4 100.0 

 
Total 257 338 64 37 4 700  

Precision (%) 96.1 93.8 65.6 94.6 100.0  92.2 

 

       
(a) Severity Level 1 

       
(b) Severity Level 2 

       
(c) Severity Level 3 
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(d) Severity Level 4 

 
FIGURE 2.3: Representative load cracking evaluation outcomes, from left to right: 

range image, crack map on intensity image, load cracking (red) and B/T cracking 

(green), and evaluation outcomes (unit: foot) 

Performance of B/T cracking classification 

For B/T cracking, the training set consisted of 68 images of no B/T cracking, 703 images 

of Severity Level 1, 74 images of Severity Level 2, and 10 images of Severity Level 3. 

The algorithm performance on the test set is shown in Table 2.2. 

As shown in Table 2.2, 369 test images are selected. The algorithm has, overall, high 

classification accuracy at about 97.2%. The results are also promising from the 

perspectives of both precision and recall. One possible reason is that the three target 

classes have quite distinctive differences in the crack properties. More data are still 

needed to further provide a more robust classification to Severity Levels 2 and 3. Some 

representative cases for B/T cracking and their automatic classification and quantification 

outcomes are shown in FIGURE 2.4. 
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Table 2.2: Performance of B/T Cracking Classification 

 
Classified Severity Level  

None Level 1 Level 2 Level 3 Total Recall (%) 

Actual 
Severity 

Level 

None 27 2 0 0 29 93.1 

Level 1 1 298 4 0 303 98.3 

Level 2 0 0 31 3 34 91.2 

Level 3 0 0 0 3 3 100.0 

 
Total 28 300 35 6 369  

Precision (%) 96.4 99.3 88.6 50.0  97.2 

 

4.4 Site-based validation 

Section validations were further conducted to compare the results from automatic and 

manual crack surveys. Following GDOT's current crack survey practice, ten 100-ft 

pavement sections were selected on SR 236, SR 275, and SR 67. Manual field surveys for 

load cracking and B/T cracking were conducted. On the other hand, the automatic crack 

classification and quantification method provided crack types, severity levels, and 

extents. The deduct values were calculated and compared between a manual survey and 

an automatic crack evaluation, and the results are presented as follows: 

       
(a) Severity Level 1 
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(b) Severity Level 2 

       
(c) Severity Level 3 

FIGURE 2.4: Representative B/T cracking evaluation outcomes, from left to right: 

range image, crack map on intensity image, load cracking (red) and B/T cracking 

(green), and evaluation outcomes (unit: foot) 

Validation on wheel-measured sections 

On four selected sites, GDOT pavement engineers visually identify the crack types and 

severity levels in the field, and the crack extents were measured using a measuring wheel 

(which is time consuming) in order to reduce the potential bias through the manual 

survey. The experimental results are shown in Table 2.3. The columns on the left are field 

crack measurement results and their corresponding deducts, and the columns on the right 

are automatic results. Based on the experimental results, the overall deducts given by 

automatic crack evaluation were close to those in the field measurement and range image 

inspection.  For the four selected sites, the average absolute difference of the overall 

deduct between automatic crack evaluation and wheel measurement is 3.25, which is 
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within the error tolerance (5-10 deduct points) in GDOT's current survey practice. The 

differences were mainly caused by 1) load cracking at Severity Level 1 is partially 

captured or detected, which leads to a lower deduct value in automatic evaluation results 

(e.g. SR 236 Site #3), and 2) a slight measurement difference on high severity levels (e.g. 

load cracking Severity Level 4 at SR 236 Site #2) results in a big difference on the deduct 

points. Both reasons will be further illustrated in the following subsection.  

Table 2.3: Section Validation with Wheel Measurement 

(a) SR 236 Site #1 
 Wheel Measurement Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 56 15 48 15 

B/T Lvl 1 100 18 100 18 

Overall  33  33 

 
(b) SR 236 Site #2 

 Wheel Measurement Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 30 10 25 9 

Load Lvl 2 7 9 7 9 

Load Lvl 4 11 29 7 22 

B/T Lvl 1 99 18 100 18 

Overall  47  40 

 
(c) SR 236 Site #3 

 Wheel Measurement Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 41 13 27 9 

Load Lvl 2 2 2 0 0 

B/T Lvl 1 100 18 100 18 

Overall  31  27 
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(d) SR 275 Site #1 
 Wheel Measurement Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 71 15 47 15 

Load Lvl 3 9 19 8 17 

B/T Lvl 1 78 18 80 18 

Overall  37  35 

 

Validation on visually-estimated sections 

Beside the four sites where crack extents were measured in detail using a measuring 

wheel, six other sites were also evaluated in this study. On these sites, GDOT pavement 

engineers visually identified the crack types and severity levels, and they visually 

estimated the crack extents in the field (following GDOT's current practices). The 

experimental results are shown in Section 4.5. 

On most sites, the overall deducts given by automatic crack evaluation were still close to 

those in the field estimation and range image inspection. For SR 275 Sites #2 and #3, the 

hairline cracks in the field were not captured or were only partially captured by the 3D 

line laser imaging system, which significantly impacted the overall deduct. For these six 

sites, the average absolute difference of the overall deduct between automatic crack 

evaluation and visual estimation was 5 out of 100, which is within the error tolerance of 

GDOT’s current survey practice.  

4.5 Limitations of the crack classification and quantification  

Through the validation, the major issues of crack classification and quantification using 

3D pavement data can be categorized as follows:  
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System resolution of current 3D line laser imaging technology 

The resolution of the 3D line laser imaging system used in this study was 1 mm in the 

transverse direction and 5 mm in driving direction. Our previous study shows that the 

system has the capability to capture cracks wider than 2 mm, but has only limited 

performance when dealing with cracks around 1mm wide (hairline cracks). Most hairline 

cracks were only partially captured or were completely missing on the range image (as 

shown in FIGURE 2.5), which leads to certain differences between automatic evaluation 

outcomes and manual survey results.  

Table 2.4: Section Validation with Visual Estimation 

 (a) SR 275 Site #2 
 Visual Estimation Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 90 15 0 0 

B/T Lvl 1 10 4 0 0 

Overall  19  0 

 
(b) SR 275 Site #3 

 Visual Estimation Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 12 7 0 0 

B/T Lvl 1 30 7 25 6 

Overall  14  6 

 
(c) SR 275 Site #4 

 Visual Estimation Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 20 8 14 7 

B/T Lvl 1 60 11 45 9 

Overall  19  16 
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(d) SR 275 Site #5 
 Visual Estimation Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 100 15 57 15 

B/T Lvl 1 60 11 57 11 

Overall  26  26 

 
(e) SR 67 Site #1 

 Visual Estimation Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 100 15 51 15 

B/T Lvl 1 100 18 81 18 

Overall  33  33 

 
(f) SR 67 Site #2 

 Visual Estimation Automatic Evaluation 

 Extent(%) Deduct Extent(%) Deduct 

Load Lvl 1 70 15 88 15 

Load Lvl 2 15 15 0 0 

B/T Lvl 1 20 6 15 5 

Overall  21  21 
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FIGURE 2.5: Limitation of current technology on hairline cracking (images from 

SR236 Site #3) 

Limitation of automatic crack detection 

Furthermore, the automatic crack detection algorithm cannot be guaranteed to provide a 

precise crack map on every image. As shown in FIGURE 2.6, some cracks were only 

partially detected, and the pavement areas with clearly double-crack lines were detected 

as only a single crack line. The limitation of automatic crack detection also impacts the 

performance of the subsequent crack classification and measurement.  
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(a) Range image                                (b) Detected crack map 

FIGURE 2.6: Limitation of crack detection algorithms (images from SR 236 Site #2) 

Measurement biases through crack quantification 

In this study, each wheelpath was assumed to contain only one load cracking severity 

level; we intentionally chose the predominant load cracking severity level when multiple 

severity levels occurred in the same wheelpath. As shown in FIGURE 2.7(a), although a 

short segment of load cracking Severity Level 2 was identified on the bottom of the 

image, the whole wheelpath was still measured and recorded as Severity Level 1. 

Similarly, the short segment of load cracking at Severity Level 4 in FIGURE 2.7(b) was 

disregarded, which might have had a larger impact on the deduct calculation, since high 

severity levels  usually correspond  to a much higher deduct value. However, since this 

automatic crack evaluation was  conducted with 100-percent coverage, such biases were 
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assumed to counterbalance each other, and, therefore, they didn't  have a significant 

impact on the overall condition assessment. 

    

(a) SR236 Site #3                                  (b) SR236 Site #2 

FIGURE 2.7: Assumptions of crack quantification in this study 

5. Case Study on Interstate Highway I-85 

We have demonstrated the performance of crack classification and quantification through 

a series of image-based and site-based field validation tests in previous sections. This 

section presents an outreach study by applying it on the interstate highways, which are 

usually high-traffic-volume roads and are challenging for traditional manual surveys. The 

selected test site is I-85 southbound between Exit 104 and Exit 85 (about 19 miles). 

According to the information provided by GDOT, the road segment inside the I-285 

perimeter was in poor condition and would be resurfaced soon. 

The pavement data was collected on the test site and the crack classification and 

quantification was conducted automatically. FIGURE 2.8 shows some representative 

LC 
Severity 
Level 2 

LC 
Severity 
Level 4 
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samples and the corresponding automatic crack evaluation outcomes. Due to the high 

traffic volume, it was difficult to conduct a field manual survey to establish the ground 

truth; therefore, the video-log images from front and back camera were provided for 

comparison purposes. 

 

(a) Load cracking 
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(b) B/T cracking 
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(c) Good pavement 

FIGURE 2.8: Representative samples on the selected interstate test site 

Based on the automatic crack evaluation outcomes, the deduct distribution of load and 

B/T cracking can be generated and visualized on a GIS map (as shown in FIGURE 2.9). 

The pavement condition inside the I-285 perimeter is clearly worse than that of outside I-

285. The automatic crack evaluation using 3D pavement data is promising for 

transforming the sensing data and detected crack map into decision support information; 

it is especially beneficial on the high-volume-traffic roads, such as interstate highways, 

where traditional manual surveys are difficult to conduct. 
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(a) Deduct distribution 

 

(b) GIS visualization 

FIGURE 2.9: Overall crack condition on the selected interstate test site 

6. Summary 

Emerging 3D laser technology demonstrated its great potential on pavement condition 

surveys. Automatic crack detection using the 3D pavement surface data has been 
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validated to provide a more accurate crack map. With the detailed preservation of crack 

characteristics, it is expected to better support automatic crack classification and 

quantification. This study validates the performance of a previously developed crack 

classification and quantification method. The major findings are summarized as follows:  

First, automatic crack classification and quantification is feasible on asphalt pavements. 

In this study, we validated crack classification and quantification following GDOT’s 

PACES distress protocol. Through the validate tests, the automatic method demonstrated 

high accuracy in classifying load cracking, B/T cracking, and their severity levels, and 

the crack quantification results are close to manual field surveys conducted by 

experienced GDOT liaison engineers.  

 An image-based validation was first conducted to validate the accuracy of crack 

classification. Actual pavement data were collected, manually reviewed, and 

labeled by GDOT pavement engineers to establish the ground truth. The 

automatic crack classification method shows an accuracy of 92.2% on classifying 

load cracking and its severity levels and 97.2% on classifying B/T cracking and 

its severity levels.  

 A site-based validation was then conducted to compare the results from automatic 

and manual crack surveys. Ten different 100-ft. sections are selected on SR236, 

SR275, and SR67 following GDOT’s current crack survey practices. For the four 

wheel-measured sections, the average absolute difference between automatic 

crack classification and quantification results and manual survey results is 3.25 

out of 100, and for the six visually-estimated sections, the average absolute 
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difference is 5 out of 100. Both differences are within the error tolerance of 

GDOT's current survey practices.  

Second, the automatic crack classification provides most robust classification results of 

low severity level cracks. The classification accuracy of load cracking and B/T cracking 

Severity Level 1 is constantly over 90% with the largest portion of experimental data. 

The load cracking and B/T cracking on interstate highways in Georgia are mostly at 

Severity Level 1. The automatic crack classification and quantification method is very 

promising to be implemented on interstate highways at this stage. 

Third, the automatic crack classification and quantification, especially for quantification, 

is influenced by the capability of a data acquisition system and crack detection algorithm. 

 Through the site-based validation, it is observed that for the sections where 

manual survey results are significantly different from the automatic results, most 

of the cracks are hairline cracks. The resolution of the 3D laser system used in this 

study is 1 mm in the transverse direction and 5 mm in driving direction. Its 

performance with hairline cracks (about 1mm wide) was less robust.  

 The performance of transverse crack quantification is fair. The data acquisition 

interval at driving direction was 5mm to collect data at highway speed. Under this 

interval, some transverse cracks may be only partially detected, so their extents 

are underestimated through the crack quantification. With the current system, the 

vehicle needs to drive at less than 20km per hour to collect 3D pavement surface 

data at a 1mm interval.  
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For future research, additional experimental data should be added, especially for the high 

severity level cracks, to further improve the classification accuracy on these cases. 

Besides load cracking and B/T cracking, other crack-related distresses, such as edge 

cracking, reflective cracking, etc., should be incorporated, as well. The classification of 

these cracks may involve historical and structural data of the pavements.  

For the outreach of this study, we will first test the automatic crack classification and 

quantification on Interstate 285 near Atlanta, and then extend the study to the entire 

interstate highway system in Georgia. Since interstate highways are usually challenging 

for a field survey due to the high traffic volume, the automatic survey results will be a 

good complement to GDOT’s current pavement survey practices. At the next stage, these 

methods will be further tested and implemented on the state routes in Georgia. The 

method can also be extended to classify and quantify cracks for different distress 

protocols, e.g. FDOT’s flexible pavement survey. 

Beyond crack classification, the concept of multi-scale crack representation using a CFE 

can be extended to developed national consistent crack measures to meet the need of 

MAP-21.  State DOTs have invested major resources to collect and maintain their legacy 

data over decades for pavement management and are not willing to change their distress 

protocol. This concept provides the opportunity to flexibly transform between their own 

distress protocols and national, consistent measures. In addition, 3D pavement surface 

data, automatic crack detection algorithms, and multi-scale crack representation from the 

CFE model can be used to develop next-generation pavement preservation planning tools, 

such as sensor-based, intelligent crack sealing planning tools. 
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Chapter 3 Validation of Automatic Concrete Pavement 

Distress Detection 

1. Introduction 

Pavement surface distress measurement is an essential part of a PMS for determining 

cost-effective maintenance and rehabilitation strategies. Visual surveys conducted by 

engineers in the field are still the most widely used means to inspect and evaluate 

pavements, although such evaluations involve high degrees of subjectivity, hazardous 

exposure, and low production rates. Consequently, automated distress identification is 

gaining wide popularity among transportation agencies. 

For the past two decades, using a 2D intensity-based imaging system has been the major 

means most state DOTs have collected data. The intensity-based data acquisition method 

makes it sensitive to lighting effects. In general, because of the intensity-based data 

acquisition method, the performance of distress detection algorithms is severely 

hampered in the presence of shadows, lighting effects, non-uniform crack widths, and 

poor intensity contrast between cracks and surrounding pavement surfaces. The challenge 

persists in spite of all the research work that has been carried out to improve image 

acquisition techniques by minimizing the lighting defects (Kaul et al., 2010). However, it 

is difficult to achieve consistent crack detection under different ambient lighting 

conditions when using natural light for illumination (Xu, 2005). Some illumination 

devices, such as LED lighting, are used to provide constant lighting that prevents the 

impact of shadows (Xu, 2005; Xu, 2007). However, the beam width of the LED lighting 

is 0.5 inch, which is not thin enough to provide sufficient depth resolution. The shallow 
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cracks and/or thin cracks, which have low intensity contrast with surrounding pavement, 

are sometimes difficult to detect.  Many algorithms are able to perform well only in an 

image data set that has images that are not too different from each other. Otherwise, 

manual inputs are required to adjust the input parameters so that the algorithms can 

perform reasonably. Although 3D stereovision has been studied recently, it is not 

operational. Therefore, full automation of pavement distress detection has remained a 

challenge, especially for accurate and reliable detection (Kaul et al., 2010). 

3D laser technology includes measuring the range of an object using the projected 

lighting and the triangulation computation.  Detailed pavement surface laser data can be 

collected at highway speed with adequate resolution in the x, y, and z dimensions.  In 

recent years, this has gained great attention from researchers, industries, and 

transportation agencies. The 3D laser technology for pavement crack detection and 

rutting measurement has, for the first time, been comprehensively validated in the lab and 

in the field in RS-GAMS Phase 1.   

This chapter is organized as follows. After introduction in Sections 1, the following four 

sections will present the comprehensive validation on automatic concrete distress 

detection using pavement surface laser data, including cracking in Section 2, faulting in 

Section 3, spalling in Section 4, and shoulder joint distress in Section 5.  Section 6 will 

summarize the major findings in this study.  

2. Validation of Automatic Concrete Pavement Crack Detection 

Automatic crack detection can be conducted based on 3D laser data, and its performance 

on asphalt pavement has been validated in RS-GAMS Phase 1. Compared to asphalt 
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pavement, crack detection on concrete pavement has some unique challenges: first, 

transverse joints on jointed plain concrete pavement (JPCP) may impact the performance 

of automatic crack detection, especially for the joints with poor conditions; second, 

parallel grooves (transverse or longitudinal) on diamond-grooved concrete surfaces may 

lead to potential false positive crack detection. The section will quantitatively validate the 

accuracy of automatic crack detection on concrete pavement. In addition, some 

representative cases, including hairline cracks, misdetection as joints, and false positive 

detection caused by pavement damage, will be presented regarding the potential issue of 

concrete pavement crack detection.  

2.1 Experimental data 

The experimental data of the validation test were collected on interstate highways I-16 

and I-516 near Savannah, Georgia. Both highways are concrete pavement on the selected 

test sites (as shown in FIGURE 3.1).  

   
(a) I-16 test site                                                (b) I-516 test site 

FIGURE 3.1: Selected test sites on concrete crack detection  
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On the I-16 test site, we selected a total of 27 slabs westbound from MP159 to MP157; 

this roadway has representative cracking patterns, most of which are transverse cracking / 

broken slabs. Each of these slabs is marked with a unique ID for future reference (as 

shown in FIGURE 3.2), and the distresses on these slabs are drawn roughly for 

comparison purposes. On the I-516 test site, we selected 15 slabs northbound from MP3 

to MP4. Similarly, each of these slabs was marked with a unique ID. Digital photos of the 

selected testing sites were taken from the road shoulder to track the detailed distress 

condition and provided certain reference through the validation.  

 

FIGURE 3.2: Manually labeling the selected concrete slab for crack detection 

validation 

3.2 Experimental design 

The following procedures are conducted to quantitatively evaluate the performance of 

automatic crack detection on concrete pavement: 

 First, the ground truth was manually digitized and extracted from the 3D laser data. 

The data was presented in the form of a range image (FIGURE 3.3(a)). Based on the 
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visual inspection of a range image, the cracking positions were manually digitized 

and converted to a binary ground truth crack map (FIGURE 3.3(b)).  

 Then, the crack map results were generated using an automatic crack detection 

algorithm. The crack map can be overlaid on an intensity image or a range image 

(FIGURE 3.3(c)), and different colors of the detected crack line represent different 

crack widths. There are two typical ways to convert data  into a binary crack map: 

o The first way is to manually digitize the intensity or range image with a crack 

map overlay (similar to the procedure used to establish ground truth). 

o The second way is to interpret the XML file as the results of distress detection and 

reconstruct a binary crack map (FIGURE 3.3(d)). 

 Finally, the two binary crack maps were compared – ground truth and automatic 

detection. The buffered Hausdorff scoring method was employed to conduct an 

objective and quantitative evaluation. 

       

               (a) Range Image              (b) Manually Digitized Ground Truth 
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        (c) Automatic Crack Detection  (d) Binary Automatic Crack Detection 

FIGURE 3.3: Illustration of evaluation procedure  

2.2 Introduction to buffered Hausdorff scoring method 

The buffered Hausdorff scoring method was proposed in our previous study to evaluate 

the performance of asphalt crack detection (Kaul et. al., 2010; Tsai et. al., 2010). It 

incorporates the strengths of both mean square error and Hausdorff distance by 

modifying the Hausdorff distance metric. The Hausdorff distance is among the most 

popular distance measures and measures the distance between two curves; it is a metric. 

It has been extensively used in literature (Beauchemin et al., 1998; Wang, 2002). For any 

two sets of points 1 2, ,......, nA a a a  and 1 2, ,......, mB b b b , 

( , ) max( ( , ), ( , ))H A B h A B h B A  

Where 

( , ) max min
b Ba A

h A B a b
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( , )h A B  is the greatest of all the small distances from points of A to B and  is the greatest 

of all the small distances from points of B to A. FIGURE 3.4 illustrates this distance 

measurement effectively. 

The value of the Hausdorff distance is large, even if one crack pixel in the segmented 

image is far from the ground truth image crack pixels. Seeing this limitation of the 

Hausdorff distance metric, a new metric was developed that does not suffer from the 

defects of the Hausdorff distance. The intuitive development of this measure is described 

next. A better distance measure than the Hausdorff distance is the modified Hausdorff 

distance given by ( , )MH A B : 

1 1( , ) max( ( , ), ( , ))MH A B h A B h B A  

Where 

1

1
( , ) min

b B
a A

h A B a b
m 



   

 

FIGURE 3.4: Illustration of Hausdorff distance 
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After initially using the modified Hausdorff distance measure for our image comparison, 

we felt that there was one more possible improvement. Once a crack pixel in the 

automatically segmented image falls substantially away from the closest pixel in the 

ground truth image, it no longer makes sense to heavily penalize this distance. Wrong 

detections beyond a certain distance should be penalized equally. This leads to a new 

distance measure, the buffered Hausdorff distance measure given by ( , )BH A B . 

2 2( , ) max( ( , ), ( , ))BH A B h A B h B A  

Where 

2

1
( , ) min

b BL
a A

h A B sat a b
m 



   

Here, 
L

sat  indicates that when the distance of the crack pixel to the closest crack pixel in 

the other image exceeds a saturation value L, we use a constant value of L for the 

distance. The buffer L was chosen to be 50 in this validation, which fits the selected 

image resolution of 1,040 × 1,250 based on our previous sensitivity study.  FIGURE 3.5 

illustrates the buffered Hausdorff distance measure. The sample values of the buffered 

distance have a very intuitive meaning, too. The buffered distance can be interpreted as 

the average Euclidean distance between the crack pixels in the ground truth image and 

the segmented images. To compare other scoring methods with this buffered distance, a 

scaled scoring measure was derived as given below: 

( , )
Buffered distance score = 100 100

BH A B

L
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The buffered distance effectively measures the performance of the segmentation methods 

and generates a score that corresponds with the qualitative performance of visual 

inspection. Using the buffered Hausdorff scoring method, the experimental results on the 

I-516 and I-16 test sites are presented in the following subsections. 

 

FIGURE 3.5: Illustration of Buffered Hausdorff distance measure  

2.3 Validation on I-516 test site 

This subsection presents the experimental results on I-516. The majority of cracks on this 

test site are longitudinal cracking. 15 slabs with longitudinal cracking were selected. 

Since the normal length of the slab is larger than the collected pavement image in the 

driving direction, some slabs were divided into two images in the experimental test, 

where the consecutive image is represented with the same ID and a single quote (e.g. 

Slab #1’).  

FIGURE 3.6 and FIGURE 3.7 are two examples demonstrating the performance of 

automatic crack detection on this test site. FIGURE 3.6 shows longitudinal cracking on a 

concrete pavement with normal crack width and no spalling. FIGURE 3.6 (a) and (b) 



 

46 

 

shows the intensity and range images collected from the 3D laser system. FIGURE 3.6 

(c) shows automatic crack detection results; it can be observed that, besides the cracks, 

the longitudinal and transverse joints for this JPCP are also extracted, which are labeled 

as straight blue lines. FIGURE 3.6 (d) shows the ground truth, which is manually 

digitized from the range image, and FIGURE 3.6 (e) shows the binary crack map 

generated from the automatic detection results. FIGURE 3.6 (f) is a digital photo taken 

from the road shoulder on this specific slab. Based on visual evaluation, the crack 

detection results are very close to the manually digitized ground truth. The buffered 

Hausdorff scoring method also gives a high score of 96.59 on this image, which indicates 

an accurate detection. Also, the transverse and longitudinal joints are successfully 

differentiated from the cracks. Similarly, FIGURE 3.7 shows longitudinal cracking with a 

large crack width and some spalling. The automatic crack detection shows an accurate 

outcome, as well, in this case.  

   
      (a) Intensity Image                (b) Range Image            (c) Automatic Crack Detection 
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(d) Ground Truth        I Binary Detection Results             (f) Field Photo 

FIGURE 3.6: Crack detection on Slab #4 on I-516 test site (Score: 96.5859) 

   

      (a) Intensity Image                (b) Range Image            (c) Automatic Crack Detection 

   

(d) Ground Truth        (e) Binary Detection Results             (f) Field Photo 
FIGURE 3.7: Crack detection on Slab #7 on I-516 test site (Score: 93.4601) 
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The overall performance on this test site is summarized in Table 3.1. The automatic crack 

detection using pavement surface laser data shows accurate and robust detection results 

on most of the images, having an overall average score of 85.89. The cases with poor 

performance were mainly caused by misclassification between cracks and construction 

joints, which will be further explained in the following subsections. 

2.4 Validation on I-16 test site 

This subsection presents the experimental results on I-16. The majority of the cracks on 

this test site are transverse cracking / broken slab. A total of 27 slabs were selected. 

Similarly, some slabs are divided into two images through the data collection, where the 

consecutive image is represented with the same ID and a single quote (e.g. Slab #C1’).  

FIGURE 3.8 and FIGURE 3.9 are two examples that demonstrate the performance of 

automatic crack detection on this test site. FIGURE 3.8 shows transverse cracking on 

concrete pavement with normal crack width and slight spalling. Based on visual 

evaluation, the crack detection results are close to the manually digitized ground truth. 

The buffered Hausdorff scoring method also gives a high score of 90.45 on this image, 

which indicates accurate detection. Similarly, FIGURE 3.9 is a broken slab with a large 

crack width and severe spalling. This introduces some uncertainty into the crack 

detection, since some spalling is large enough to be detected separately as spalling (as 

shown in the blue area on the image). Based on visual inspection, the overall pattern of 

detected cracks is similar to the one in the ground truth, although some false positives and 

false negatives are observed. The buffered Hausdorff score on this image is 85.41. 
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Table 3.1: Performance Evaluation of Crack Detection on I-516 Test Site 

Slab ID Description Score 

1 Longitudinal cracking, wide with spalling 97.4526 

1’ Longitudinal cracking, normal width 95.167 

2 Longitudinal cracking, normal width 97.595 

3 Longitudinal cracking, wide with spalling 98.0972 

3’ Longitudinal cracking, wide with spalling 98.6694 

4 Longitudinal cracking, normal width 96.5859 

4’ Longitudinal cracking, normal width 81.3702 

5 Longitudinal cracking, normal width 93.2204 

6 Longitudinal cracking, normal width 89.6559 

7 Longitudinal cracking, wide with spalling 93.4601 

7’ Longitudinal cracking, wide with spalling 41.8065 

8 Longitudinal cracking, wide with spalling 86.8667 

8’ Longitudinal cracking, wide with spalling 46.8266 

9 Longitudinal cracking, wide with spalling 90.9242 

9’ Longitudinal cracking, wide with spalling 97.2637 

10 Longitudinal cracking, wide with spalling 96.8542 

11 Longitudinal cracking, normal width 78.0038 

11’ 
Longitudinal and transverse cracking, normal 
width 

63.1563 

12 Longitudinal cracking, wide with spalling 87.9587 

13 Longitudinal cracking, wide with spalling 54.7187 

14 Longitudinal cracking, wide with spalling 96.9098 

15 Longitudinal cracking, wide with spalling 95.0416 

15’ Longitudinal cracking, normal width 97.8843 

AVG Average Score on the I-516 site 85.8908 

   
      (a) Intensity Image                (b) Range Image            (c) Automatic Crack Detection 
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(d) Ground Truth        (e) Binary Detection Results             (f) Field Photo 

FIGURE 3.8: Crack detection on Slab #C15 on I-16 test site (Score: 90.4512) 

   

      (a) Intensity Image                (b) Range Image            (c) Automatic Crack Detection 

   

(d) Ground Truth        (e) Binary Detection Results             (f) Field Photo 
FIGURE 3.9: Crack detection on slab #C1’ on I-16 test site (Score: 85.4087) 
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The overall performance on this test site is summarized in Table 3.2. The performance of 

automatic crack detection on this site is not as good as on the I-516 test site, having an 

overall average score of 64.95. This is probably due to three reasons: 1) compared to 

longitudinal cracking, transverse cracking has a higher probability of being misclassified 

as construction joints; 2) many hairline cracks are observed on this site, which are 

difficult for the current system to detect due to the resolution limit; and 3) many severe 

spallings along the cracks interfere with the crack detection performance. More details on 

these failed / poor-performance cases are presented in the following subsection. 

2.5 Potential issues of concrete pavement crack detection 

Through the performance evaluation of automatic crack detection on concrete pavement, 

several major issues were identified, including hairline cracks, misdetection as joints, and 

false positives caused by pavement damage. Each of these issues is discussed below with 

a representative example to analyze the potential cause and future solution.  

Table 3.2: Performance Evaluation of Crack Detection on I-16 Test Site 

Slab ID Description Score 

C1 Transverse cracking, normal width 75.3972 

C1’ Broken slab, wide with spalling 85.4087 

C2 Transverse cracking, normal width 59.8938 

C3 Transverse cracking, normal width 84.6954 

C4 Broken slab, wide with spalling 54.3036 

C8 Broken slab, wide with spalling 47.1257 

C10 Transverse cracking, normal width 89.279 

C12 Transverse cracking, hairline 46.8648 

C13 Replaced slab, hairline cracking 39.5158 

C14 Broken slab, wide with spalling 50.5526 

C15 Transverse cracking, normal width 90.4512 

C16 Transverse cracking, normal width 47.7935 

C17 Transverse cracking, hairline 45.1996 
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C18 Transverse cracking, normal width 92.6896 

C20 Broken slab, wide with spalling 54.871 

C22 Replaced slab, hairline cracking 59.9153 

C24 Replaced slab, longitudinal cracking 37.121 

C26 
Longitudinal cracking, wide with 
spalling 94.0759 

C27 
Longitudinal cracking, wide with 
spalling 78.9262 

AVG Average Score on the I-16 site 64.9516 
 

Hairline cracks 

Similar to asphalt pavement, hairline cracks on concrete pavement present a major 

challenge for crack detection. The data acquisition interval of the current 3D line laser 

imaging system is 1 mm in the transverse direction and 5 mm in the driving direction. In 

this experimental test, it wasn’t practical to manually measure the crack width at the test 

site due to the heavy traffic on the interstate highway. Based on our previous experience 

on asphalt pavement, cracks with widths below 2 mm are difficult to detect. FIGURE 

3.10 shows a representative case of hairline cracking. The middle part of the transverse 

crack on the image is hairline. It can be seen that that portion is too thin to be observed, 

even from the high-resolution digital photos taken from the shoulder. The automatic 

detection can only extract part of the entire crack line in this case, which leads to a poor 

buffered Hausdorff score. The hairline cracking issue is better observed on the I-16 test 

site, resulting in an overall, relatively low score on that site; also, the larger data 

acquisition interval in the driving direction makes it more difficult to capture transverse 

hairline cracking. 
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Misclassification as Joints 

For concrete pavement, especially for joint plain concrete pavement, automatic crack 

detection needs to be conducted together with joint detection. Concrete joints have very 

similar appearance and characteristics with cracks; without a separate joint detection, 

most of the joints will be captured as concrete cracking, as well. Although the joint 

detection algorithm performs relatively accurately (presented in the faulting measurement 

validation section), conducting joint detection simultaneously with crack detection 

introduces the potential risk that some cracks may be misclassified as joints at the first 

stage. 

Through the experimental tests, several such cases are observed for both transverse 

cracking and longitudinal cracking. FIGURE 3.11 shows an example of transverse 

cracking; the left side of the crack is detected successfully, while the right side is 

misclassified as a joint. FIGURE 3.12 shows an example of longitudinal cracking; the top 

side of the crack is detected successfully, while the bottom side is misclassified as a joint. 

Based on the experimental results, these false detection cases usually happen under the 

following two situations: 1) cracks appear to be approximate straight lines and 2) some 

spalling occurs along the crack and interfere with the crack detection. 
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(a) Intensity Image                     (b) Range Image 

      

                     (c) Automatic Crack Detection                (d) Field Photo 

FIGURE 3.10: Crack detection on hairline cracking 

   

             (a) Intensity Image             (b) Range Image         (c) Automatic Detection Results 

FIGURE 3.11: Misclassification of transverse cracking as concrete joint 
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            (a) Intensity Image             (b) Range Image         (c) Automatic Detection Results 

FIGURE 3.12: Misclassification of longitudinal cracking as concrete joint 

To remove these false detections, the following additional criteria can be considered as a 

follow-up step after crack and joint detection. First, the location of detected joints is 

evaluated, especially for longitudinal joints. If a longitudinal joint is located in the middle 

of the lane, there is a high probability that it is a false joint detection. Second, the 

connectivity between joints and neighboring cracks is evaluated. If a joint is directly 

connected to cracks, either longitudinal or transverse, it may be a false joint detection, as 

well. These further modifications will improve the crack and joint detection accuracy in 

future implementation. 

False Positive Detection 

Similar to asphalt pavement, false positive detections still exist in concrete pavement. 

This is mainly due to the data acquisition mechanism of the 3D line laser imaging system. 

Since pavement surface laser data is purely based on the elevation of pavement surface, 

any pavement damage that result in an elevation change will lead to potential risk on 

crack detection. One example is shown in FIGURE 3.13. We can observe a clear, straight 
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dent along the driving direction on the range image (FIGURE 3.13(b)), whose appearance 

is quite similar to cracks; automatic crack detection also extracts those out as cracking 

(FIGURE 3.13(c)). However, this dent is most likely to have been caused by a flat tire of 

heavy trucks, which is a false positive detection in this case.  

These false positives are the issue that we have to face under the 3D data acquisition 

mechanism. To further remove these, the characteristics of these false detections need to 

be studied and classified, and then a specific filter can then be designed to remove them 

either at the data preprocessing stage or during the post processing of the detection 

results. 

   

            (a) Intensity Image             (b) Range Image         (c) Automatic Detection Results 

FIGURE 3.13: Example of false positive detection 

2.6 Summary 

For automatic concrete pavement crack detection using a 3D laser data, the major 

findings are summarized as follows: 

First, the 3D laser system shows overall acceptable performance for automatic crack 

detection on concrete pavement. Two test sites were selected on interstate highways I-
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516 and I-16 to quantitative evaluate the crack detection performance. Automatic crack 

detection results were compared with the manually digitized ground truth using the 

buffered Hausdorff scoring method. The automatic crack detection shows quite accurate 

and robust results on the I-516 test site, which mainly consists of longitudinal cracking.  

The crack detection performance on I-16 test site was not as good; this is mainly due to 

the fair amount of hairline cracking and interference due to severe spalling and joint 

detection. Through the discussion of false detection cases in this chapter, there is still the 

potential to further improve the performance of these cases. In summary, from the crack 

evaluation perspective, the emerging 3D laser system demonstrates its capability to 

support further automatic concrete pavement condition evaluation.  

Second, hairline cracks are still quite challenging for automatic detection. The data 

acquisition interval of the current 3D laser (1 mm in the transverse direction and 5 mm in 

the driving direction) makes it difficult to detect hairline cracks thinner than 2 mm. Also, 

the fact that there are more false negatives detected in transverse cracking can be 

explained by the large data acquisition interval in the driving direction. 

Third, as on asphalt pavement, pavement damage caused by flat tires or trucks still has an 

impact on crack detection on concrete pavement. A dent on pavement has a very similar 

appearance as cracking and may lead to a false positive detection. The characteristics of 

these pavement damages need to be studied and classified, and a specific filter can then 

be designed to remove them, either at data preprocessing stage or during the post 

processing of the detection results. 
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3. Validation of Concrete Pavement Faulting Measurement 

Faulting is the differential vertical displacement of the slab edge across a transverse joint 

caused by inadequate load transfer, differential deflection at the joint, inadequate base 

support, or sub-base erosion (Jung et al., 2008). The difference in elevation affects 

vehicle ride quality, accelerates vehicle damage, and leads to distresses, such as corner 

breaks and blowups; thus, faulting has a major effect on vehicle operation costs and 

pavement life-cycle costs (FHWA, 2006). Faulting is an important performance indicator 

for jointed concrete pavements and the criteria for pavement restoration decisions. 

Faulting has traditionally been collected by manual methods. The Georgia Faultmeter, 

designed by GDOT, is one of the most popular hand-held devices for performing faulting 

measurement and is used by many state highway agencies, including GDOT (2004) and 

the Minnesota Department of Transportation (MnDOT) (Burnham, 2003). In this method, 

a surveyor finds a gap in traffic and sets the faultmeter at a single spot along a designated 

joint to measure faulting. GDOT requires the meter to be set approximately 15 cm (6 in) 

from the pavement edge marking in the outside lane. The surveyor pushes the button to 

acquire a faulting measurement and records it manually. This manual operation is labor-

intensive, time-consuming, costly, and dangerous to workers and drivers. It also limits the 

faulting measurement to only the sampled joints, not all of the joints. GDOT conducts 

faulting measurement on every eighth joint (GDOT, 2004). Therefore, alternative 

methods for effectively and safely collecting faulting data are much needed. In addition, 

state highway agencies are now required to collect faulting data under the new Highway 

Performance Monitoring System (HPMS) reassessment (OHIP & FHWA 2008). This 

strongly motivates state DOTs to look for cost-effective means to collect faulting data. 
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Recently, some state highway agencies, such as the Florida Department of Transportation 

(FDOT) and the Mississippi Department of Transportation (MDOT), have collected 

faulting data using single laser profile data that were collected for the IRI (MaGhee, 

2004; Nazef et al., 2009). With the single profile data, it is important to have an adequate 

sampling interval to locate the joint.  Nazef et al. reported that a 1.7 cm (0.68 in) 

sampling interval yields a 95% joint detection rate using the algorithm developed by the 

FDOT. The chance of missing joints increases as the sampling interval increases.  

With the advances of sensing technology, the 3D laser technique creates the potential to 

use not one single profile but the entire pavement surface to measure the faulting across 

concrete joints. FIGURE 3.14 illustrates the basic principle of capturing line laser data 

along the joints while the vehicle is driving at highway speed, and FIGURE 3.15 gives an 

example of the collected pavement surface laser data at the location of a concrete joint. It 

can be observed that the elevation change of the pavement surface is clearly captured by 

the laser data, which makes it possible to develop automatic faulting measurement 

algorithms.  

 

FIGURE 3.14: Illustration of the alignment of the 3D continuous laser profiles 
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FIGURE 3.15: Example of pavement surface laser data for faulting measurement 

To validate the capability of using the pavement surface laser data on faulting 

measurement and to examine the performance of corresponding automatic faulting 

measuring methods, a comprehensive validation test was  conducted in our research. 

Using the same pavement surface laser data, two different methods are evaluated in this 

section, including a regression-based faulting measurement (Tsai, et al., 2012) and the 

concrete joint module provided in the commercial software. The test results, analysis, and 

major findings are presented in this report to provide an overall performance evaluation 

and, also, to make suggestions for future improvement. 

3.1 Validation using the regression-based faulting detection method 

For the regression-based method, a controlled in-lab experimental test was first 

conducted to examine the detection accuracy of the method; then, a field test was 

conducted on I-16 to evaluate the accuracy and the feasibility of operating the integrated 

sensing system at highway speeds. 
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Controlled In-lab Experimental Result and Analysis 

 

FIGURE 3.16: Controlled test 

In-lab tests were designed to test the regression-based method with the faulting in 

different ranges in a well-controlled environment, as it is difficult to locate a testing 

section of an appropriate length that can cover a full range of faulting. The artifacts, made 

of two wood panels creating two flat surfaces with known elevation differences, were 

used to create the elevation differences ranging from 0.8 to 15 mm (1/32 to 19/32 in). The 

purpose was to mimic the range of faulting measured by the Georgia Faultmeter.  The 

artifacts were set level on a fairly flat road on the Georgia Tech campus to ensure a 

consistent elevation difference between any two points on the two panels. The known 

elevation differences were also confirmed using the Georgia Faultmeter on the test site, 
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as shown in FIGURE 3.16. The integrated sensing system was then used to collect the 

pavement surface laser data with a 1mm (0.04 in) resolution in the transverse direction 

and a 5mm (0.2 in) interval between two profiles in the travel direction at low speed, as 

shown in FIGURE 3.16(b). With a 12° tilt angle, approximately 15 profiles were 

collected along the 38 cm (15 in) wide wood panel. FIGURE 3.16(c) shows one of the 3D 

continuous pavement profiles that can be used to derive the elevation difference. The 

elevations of the two flat surfaces can be established by applying regression to the points 

representing the surface, as shown in FIGURE 3.16(d). Following the footprint of the 

Georgia Faultmeter, the elevations of two measurement points (P1 and P2 in FIGURE 

3.16(d)), separated by 50 mm (2 in.), were estimated using the regression lines, and then 

the elevation difference could be calculated. 

 

FIGURE 3.17: Known & derived elevation differences 

The accuracy of the derived elevation differences was then evaluated by comparing the 

derived and the known elevation differences. FIGURE 3.17 shows the derived elevation 

differences were close to the known elevation differences with a small variation. The 

comparison results in Table 3.3 show that the average absolute differences are within 1 



 

63 

 

mm (0.04 in), and the variances among different profiles were fairly small (less than 1 

mm) and consistent across various elevation differences. The regression-based method 

slightly overestimated the elevation differences. The 0.8 mm (1/32 in) elevation 

difference may not be detected reliably because of the 0.5 mm resolution in the vertical 

direction. The results of the controlled field tests have demonstrated that the regression-

based method can achieve an accuracy of less than 1 mm with small variances among 

different profiles. 

Table 3.3: Summary Result of Elevation Statistics 

 

Field Experimental Result and Analysis 

Field tests were also conducted on I-16 to evaluate the accuracy and repeatability of the 

regression-based method and the feasibility of operating the integrated sensing system at 

highway speeds. A 450-ft test section covering 15 joints on eastbound I-16 between 

milepost 154 and 155 was selected because of the sampled faulting reported on the 

section by GDOT’s engineers. The slabs are 9 m (30 ft) long and 3.65 m (12 ft) wide. 

The 15 slabs were first labeled and marked with a sequential number and a point where 

the faulting was measured on the basis of GDOT’s faulting measurement practice 

(GDOT, 2004). The marked point was approximately 15 cm (6 in) from the pavement 

edge marking. The faulting was measured three times at each joint to establish the ground 



 

64 

 

truth. The integrated sensing system was then used to collect faulting data at two different 

highway speeds, 100 and 80 km/h (62.5 and 50 mph). The joint can be captured by the 

profile with 1 mm (0.04 in) resolution in the transverse direction. Three runs were 

repeated at each speed to evaluate the repeatability of derived faulting measurements and 

the feasibility of operating the integrated sensing system at highway speeds. The 3D 

continuous pavement profile data at the marked point where the faulting was measured 

by the Georgia Faultmeter was identified manually, and faulting was derived on the basis 

of the selected profile data using the same method described in the controlled field test 

section. 

 

FIGURE 3.18: Measured vs. derived faulting measurements 

Faulting measurements of the 15 joints derived from the 3D continuous pavement profile 

data were compared with those measured using the Georgia Faultmeter to evaluate the 

accuracy and repeatability of the regression-based method at highway speed. FIGURE 

3.18 shows that the derived faulting measurements are fairly close to the ones measured 

using the Georgia Faultmeter, having a maximum difference of less than 2 mm. Table 3.4 

summarizes the derived faulting measurements on the 15 joints collected on I-16 at 
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different speeds. The derived faulting measurements range from 1.2 to 9.4 mm (0.05 to 

0.37 in), and 13 out of 15 joints have a difference of less than 1 mm; the largest 

difference is 1.9 mm.  

Table 3.4: Statistics of Derived Faulting Measurement on 15 Slabs by Speeds 

 

The repeatability of the derived faulting measurements collected in three runs at each 

speed was evaluated next. FIGURE 3.19 and FIGURE 3.20 show the derived faulting 

measurements from three runs at 80 and 100 km/h, respectively. As shown in FIGURE 

3.19 and FIGURE 3.20, there is no significant difference among the different runs. The 

standard deviations are within 1 mm, as shown in Table 3.4. The maximum differences 

among three runs were also reviewed. For the data collected at 100 km/h, 13 out of 15 

joints (87%) have a maximum difference of less than 1 mm (0.04 in.). Results indicate 

that the derived faulting measurements can achieve a desirable repeatability among 

different runs at the same speed. Finally, the derived faulting measurements were 

compared at different speeds. FIGURE 3.21 shows the derived faulting measurements are 

close at different speeds, and no significant difference or bias can be observed. The 

differences are within 1 mm (0.04 in), as shown in Table 3.4. On the basis of these 
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analyses, the proposed method can achieve a desirable repeatability among different runs 

and at different speeds, and it is feasible to operate the integrated sensing system at 

highway speed (e.g., 100 km/h) for collecting faulting data.  

 

FIGURE 3.19: Derived faulting measurements at 80 km/h 

 

FIGURE 3.20: Derived faulting measurements at 100 km/h 

 

FIGURE 3.21: Comparison of faulting measurements at different speeds 
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On the basis of lab tests and field tests conducted on I-16, the preliminary results have 

demonstrated that it is feasible to collect faulting data with desirable accuracy and 

repeatability when using the 3D continuous profiles acquired by the integrated sensing 

system at highway speeds. 

3.2 Validation using the concrete joint module in the commercial software 

Transverse Joint Detection Module Test 

To test the accuracy of the software for detecting transverse joints, we conducted a 

validation test on a dataset of 941 images. An example of the expected detection result is 

shown as FIGURE 3.22. 

 

FIGURE 3.22: Example of correctly detected cases 

The blue lines in the image indicate the location of the joint, while the red bars indicate 

the measuring points for faulting; the information will be utilized in the next section. It 

can be seen that for the expected outcome, the correct detection needs to be on both sides 

of the road, and the length of the detected lines (the blue ones) should match the actual 

transverse joint length. 
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Within these images, 5 images with transverse joints were not detected correctly (Type II 

error);  in 4 images, other distresses, such as cracks, are mistakenly detected as joints 

(Type I error). Considering both Type I and Type II errors, the joint detection module 

still achieved an accuracy of 99.5%. 

To find the reasons for the incorrect detection, we further examined the error cases. Four 

false-positive cases were big transverse cracks sharing the typical characteristics of joints 

(shown in FIGURE 3.23): 

 

FIGURE 3.23: Example of false-positive cases 

This type of case is, naturally, difficult to eliminate because these cracks have almost all 

the unique characteristic of joints. However, it is very rare for the crack to maintain a 

consistent width and straightness in both sides of the pavements. So, unlike transverse 

joints, normally these cases would only occur in one side of the pavement. As a result, it 

is easy to find them by comparing the detection results with the other side of the 

pavement.  

Five false-negative cases have the detection results only on one side, as shown in 

FIGURE 3.24:  



 

69 

 

 

FIGURE 3.24: Example of false-negative cases 

Most of these cases contain joints with a portion outside the image, which may cause 

problems in detection. However, it is not common for the false-negative cases to occur on 

both sides. By examining the detection result on the other side of the pavement, the 

impact of false-positive cases can be much reduced. 

 Some other special cases were also tested. There are 5 images containing joints with 

asphalt patches (FIGURE 3.25), and all such cases are detected correctly, which indicates 

patching may not influence the detection process. 

 

FIGURE 3.25: Example of joints with patch 
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Faulting Measuring Module Test 

Data Collection and Ground Truth Establishment 

For faulting measurement, we collected data on a section of I-16. The location is shown 

in the map in FIGURE 3.26.  Field measurement was conducted to establish the ground 

truth for this validation test.  Three places on the route were selected for manual ground-

truth data collection;   each of the three places contained 10 continuous concrete slabs. 

One place is around EB MP159 (Site #1), and the other two spots are on WB MP159 

(Site #2) and MP156 (Site #3). All those joints measure are marked with color painting.  

The Georgia Faultmeter, which has already been introduced in the literature review, was 

used as the measuring tool, as shown in FIGURE 3.27.  

 

FIGURE 3.26: Locations of data collection 

Site 1 (EB) 

Site 2 (WB) 

Site 3 (WB) 
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FIGURE 3.27: Left: Georgia Faultmeter; Right: Manual measurement on the 

roadway 

To reduce random errors, multiple runs were conducted for the same pavement section. 
The marked measuring location example is shown in FIGURE 3-28, with the white dot 
painted on the joint indicating the measuring point: 

 

FIGURE 3-28 Marked measuring point in pavement surface laser data 
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Testing Results  

The tests consisted of several major steps. First, a proper configuration was needed for 

the software to achieve good performance.  In this test, we added a further averaging 

procedure, which calculated the average detected elevation differences among all points 

within the marked area to reduce possible random errors. After that, a comprehensive 

analysis and interpretation of the final result were made to arrive at the conclusion. 

a) Parameter Configuration 

The faulting detection module of the software has several adjustable parameters, which 

would influence the detection performance. The most important parameters are illustrated 

in FIGURE 3.29: 

 

FIGURE 3.29: Faulting measurement parameters 
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The mechanism of the detection module obtains the elevations of both ends of the red 

bars in FIGURE 3.29, and then compares their differences in elevation. A is the distance 

between consecutive measuring points along the joint; B is the distance between two 

measuring ends; and C is the averaging window length. Our averaging program requires 

the distance A to be 1 mm, which will be elaborated upon later. As the averaging process 

would be done in the next step, we set the averaging window size, which is the distance C 

in FIGURE 3.29, as 1 mm, too. So, the only variable left adjustable is the distance B. To 

find out the optimal value of distance B, we tried multiple settings, including 50 mm, 100 

mm, 200 mm, and 300 mm. The test results are discussed below: 

b) Initial Result Averaging 

As is shown in FIGURE 3-28, the measuring point is actually an area in the image, so to 

increase the precision, we set the distance A to a very small value (1 mm) and 

programmed to get the average evaluation difference within the area as the final outcome. 

Normally, there will be nearly 40 points within the marked area.   We first find these 

points by the X coordinate range (horizontal), and then extract them from the XML file 

generated by the software.  

c) Result Analysis 

The final result after the averaging process is discussed in this section. From the test 

results, we calculated the mean and standard deviation values of the error, which is 

defined as the absolute difference between the software-measured value and the ground 

truth for different settings. We also calculated the 95% confidence upper limit of the error 

for every setting - basically this means the error has a probability of 95% lying below this 

limit. 
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The Site 1 data has the largest error, with more than 2 mm at 95% of the upper limit for 

all the settings; in the other two sites, this value can be controlled within 2 mm for some 

settings.  However, even for Site 1, the average error value is only slightly higher than 1 

mm; in the other two sites, the average errors are both below 1 mm.  In reality, the 

faulting cases we have interests in normally have elevation differences larger than 5 mm, 

so a mean error of approximately 1 mm and maximum of 2 mm variance for small 

portion cases is acceptable. Through performance comparison among different settings of 

B distance, it can be seen that the 50 mm setting has the worst accuracy with the highest 

mean and deviation values of error in all three sites; the other three groups are much 

better. The performance of 100 mm, 200 mm, and 300 mm are slightly different. At Site 

1 and Site 2, 100 mm has the best performance, while 300 mm has the worst, 

approximately 1 mm and 0.5 mm lower in the 95% upper limit, respectively; in Site 3, 

the 300 mm setting performs the best, while 100mm performs the worst, yet is only 0.3 

mm lower in the 95% upper limit. So, 100 mm has overall slightly better performance 

than 300 mm. Meanwhile, the 200 mm setting has consistently good performance, which 

can also be a recommended setting. 

Table 3.5: Test Result for Site 1 (Error = |Measured Value – Ground Truth|) 

Site 1 Field Test(Ground Truth) LCMS Results 

Sample number Round1 Round2 Round3 Average / mm 50mm 100mm 200mm 300mm 
1 0.79 0.79 2.38 1.32 0.23 0.49 1.07 2.23 
2 3.18 1.59 1.59 2.12 0.41 0.54 -0.03 0.41 
3 2.38 2.38 3.18 2.65 -1.62 0.62 1.51 0.21 
4 2.38 3.18 3.97 3.18 0.61 1.65 2.61 2.33 
5 1.59 0.79 1.59 1.32 0.83 0.48 2.40 1.00 
6 2.38 3.18 3.18 2.91 5.34 1.83 1.70 2.05 
7 1.59 1.59 0.79 1.32 -1.43 0.40 0.63 0.94 
8 5.56 5.56 4.76 5.29 2.48 4.18 3.23 2.55 
9 3.97 3.97 4.76 4.23 0.72 2.20 1.19 1.23 
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10 1.59 1.59 1.59 1.59 -0.11 0.74 1.09 1.02 
Extra 3.18 3.18 1.59 2.65 0.86 1.30 2.37 2.56 

Error Mean / 2.28 1.29 1.18 1.26 

Error Std dev. / 1.03 0.43 0.85 0.99 

95% Conf. Upper Limit / 4.29 2.13 2.85 3.20 

Table 3.6: Test Result for Site 2 (Error = |Measured Value – Ground Truth|) 

Site 2 Field Test(Ground Truth) LCMS Results 

Sample number Round1 Round2 Round3 Average / mm 50mm 100mm 200mm 300mm 
1 11.11 11.11 11.91 11.38 / / / / 
2 0.79 0.79 0.79 0.79 0.49 -0.021 1.438 1.057 

3 4.76 4.76 5.56 5.03 6.28 4.718 4.088 3.708 

4 3.97 3.18 3.18 3.44 8.06 3.588 5.491 5.464 

5 7.14 6.35 5.56 6.35 2.29 7.087 7.204 8.107 

6 3.18 3.18 3.18 3.18 0.047 1.54 2.776 2.7 

7 3.97 3.18 2.38 3.18 10.69 2.123 3.521 4.457 

8 3.18 3.18 3.18 3.18 1.46 2.645 2.669 3.648 

9 5.56 5.56 5.56 5.56 2.4 4.734 4.917 4.709 

10 9.53 9.53 9.53 9.53 7.27 10.826 10.013 9.154 

Error Mean / 3.11 0.82 0.76 0.98 

Error Std dev. / 2.02 0.44 0.49 0.61 

95% Conf. Upper Limit / 7.06387 1.6815 1.7269 2.1686 

 

Table 3.7: Test Result for Site 3 (Error = |Measured Value – Ground Truth|) 

Site 3 Field Test(Ground Truth) LCMS Results 

Sample number Round1 Round2 Round3 Average / mm 50mm 100mm 200mm 300mm 
1 5.56 5.56 5.56 5.56 6.005 4.481 3.838 4.138 
2 7.14 7.94 7.94 7.67 5.398 8.745 8.216 7.284 
3 3.97 3.97 3.97 3.97 5.598 3.718 4.42 4.19 
4 3.97 3.97 3.97 3.97  / /  /  /  
5 7.14 7.94 7.94 7.67 6.686 7.988 8.016 7.564 
6 3.97 3.97 3.97 3.97 5.684 5.275 4.443 3.45 
7 4.76 3.97 4.76 4.50 1.88 4.837 5.018 5.738 
8 5.56 6.35 6.35 6.09 6.307 7.854 7.239 5.749 
9 4.76 3.18 3.97 3.97 4.449 4.642 4.707 4.844 

10 6.35 7.14 6.35 6.61  / /  /  /  

Error Mean / 1.30 0.85 0.74 0.64 

Error Std dev. / 0.84 0.51 0.44 0.45 

95% Conf. Upper Limit / 2.94047 1.8517 1.5989 1.5282 
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FIGURE 3.30, FIGURE 3.31and FIGURE 3.32 visualize the detection results. It’s fairly 

clear that the 100 mm, 200 mm and 300 mm settings all outperform the 50 mm one. 

 

FIGURE 3.30: Site 1 result 

‐2.00

‐1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6 7 8 9 10 11

El
e
va
ti
o
n
 D
if
fe
re
n
ce
 /
 m

m

Joint Sample Number

Average / mm

50mm

100mm

200mm

300mm



 

77 

 

 

FIGURE 3.31: Site 2 result 

 

FIGURE 3.32: Site 3 result 
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In this test, most cases have been successfully measured, yet three cases in which joints 

have been successfully detected failed to provide faulting measurement information. 

Results with the symbol ‘/’ indicate failure to provide faulting information. Most of these 

problems occurred in joints with a portion outside the image and with a marked location 

close to the image edge, as shown in FIGURE 3.33.  

 

FIGURE 3.33: Example of joints with excluded part 

In conclusion, with proper settings, the pavement surface laser data, along with the 

faulting detection software, can measure the elevation difference across transverse joints 

with an average error of approximately 1 mm, and less than 1 mm variance in most cases; 

the 95% error limits can be controlled to within 2 mm in two of the three sites tested, and 

slightly over 2 mm in the third site. Per the requirement of the project needs, the accuracy 

provided is acceptable.  According to the testing results, the recommended setting of the 

distance between two measuring points can be either 100 mm or 200 mm. If possible, 

multiple tests using different settings are recommended to reduce false detection cases. 
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3.3 Summary 

To validate if the 3D pavement surface data acquired by the new technology could 

provide sufficient accuracy, two detection methods are tested in the study. For the 

regression-based detection method, both controlled in-lab tests and field tests were 

conducted for performance evaluation. The controlled test shows less than 0.6 mm mean 

error with small variances in multiple cases; the field test, which collects data at highway 

speed, shows less than a 1.5 mm mean error with a standard deviation smaller than 1 mm 

at 80 km/h and 100 km/h. So, though the speed of data collecting can affect detection 

accuracy, the variation is not significant and won’t affect the consequent analysis. 

For the built-in faulting detection software module test, in which the data-collecting 

vehicle drove at approximately 96.6 km/h (60 mile/h), different software configurations 

were tested to achieve the optimal accuracy. It was  found that with 100 mm or 200 mm 

as the measuring distance setting, the average error can be controlled around 1 mm with 

less than 1  mm variance. Future research could focus on improving handling missed 

cases in which joints are not completely inside the images.  

Judging from these validation test results, it is concluded that with the proper detection 

algorithm and software configuration, collecting faulting data by using the integrated 

sensing system at highway speeds to collect 3D continuous profile data is feasible and 

produces data with desirable accuracy and repeatability.  Though the regression-based 

method and the built-in software occasionally produce incorrectly detected cases, the 

overall detection accuracy is acceptable, and through post-processing, it is easy to reduce 

the impact of such cases. 
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4. Validation of Concrete Pavement Spalling Detection 

Spalling is a common type of concrete pavement distress that usually occurs along the 

construction joints between concrete slabs. According to the LTPP’s definition, spalling 

refers to cracking, breaking, chipping, or fraying of slab edges within 0.3 m from the face 

of transverse joints. GDOT defines spalling as the deterioration of concrete at the joint, 

which usually starts with the breaking or flaking off of the concrete at the joint; as they 

worsen, raveling and pop-outs occur (as shown in FIGURE 3.34). Due to its random 

spatial distribution pattern on the concrete pavement, it is difficult to design a sampling 

strategy for a manual spalling survey. Therefore, automatic spalling detection will help 

improve the cost-effectiveness of concrete pavement maintenance and enhance roadway 

safety.  

   

FIGURE 3.34: Example of spalling at concrete joint (GDOT 2003) 

With the advances in sensing technology, an automatic spalling detection method can 

now be developed using 3D laser pavement data. The section will validate the accuracy 

of automatic spalling detection on concrete pavement. In addition, some representative 

false negative cases (e.g. asphalt-filled spalling and small/shallow spalling) and false 
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positive cases (e.g. crack spalling, shoulder-joint distress, and concrete coring) will be 

presented to reveal the potential issue of concrete pavement spalling detection.  

4.1 Experimental data 

The experimental data of the validation test were collected on interstate highways I-16 

and I-516 near Savannah, Georgia. Both highways are concrete pavement at the selected 

test sites (as shown in FIGURE 3.35).  

 
(a) I-16 test site                                   (b) I-516 test site 

FIGURE 3.35: Selected test sites on concrete spalling detection  

4.2 Experimental design 

The following procedures were conducted to evaluate the performance of automatic 

spalling detection on concrete pavement: 

 First, the ground truth was established by manually reviewing the collected pavement 

surface laser data and identifying the location of spalling. Since the distribution of 

spalling is sparse on actual concrete pavement, it is not practical to manually record 

the ground truth along the road. However, spalling has a distinctive elevation change 

on concrete pavement, and a 3D range image is sufficient to support the ground truth 

established for validation purposes (as shown in FIGURE 3.36(a)). Based on the 
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visual review of collected range images from the entire test site, the spalling location 

is manually identified.  

 Then, the automatic spalling detection algorithm is applied. The spalling detection 

results can be overlaid on an intensity image or range image (FIGURE 3.36(b)). 

 Finally, the ground truth and automatic detection results are compared. The number 

of correctly-detected/missed spalling are counted to calculate the overall detection 

precision. 

       

               (a) Ground Truth             (b) Automatic Spalling Detection Result  

FIGURE 3.36: Illustration of spalling evaluation procedure  

4.3 Validation on I-516 and I-16 test sites 

Based on the manual review, a total of 86 spalling locations were identified on the 

selected test sites.  Of these, 65 spallings were correctly detected, while 21 spalling 

locations were missed by the automatic detection algorithm, which provides a detection 

precision of 75.6%. Some representative cases are presented below. 

Correct Detection Cases  

FIGURE 3.37 shows three representative examples of correctly detected spalling. It can 

be observed that the location and shape of spalling do not have a significant impact on the 
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performance of the automatic spalling detection algorithm. The automatic detection can 

also extract multiple spalling locations from the same pavement image. 

   

(a) Lane Line                         (b) Middle                            (c) Edge Line 

FIGURE 3.37: Examples of correctly detected spalling  

False Negative Cases 

After a careful review of  the 21 spalling locations that were  missed by the automatic 

detection algorithm, these false negative cases can generally be classified into two 

different types: 

 Undersized spalling: as shown in FIGURE 3.38(a), the size of the spalling is too 

small to be captured by the automatic detection algorithm. Besides the area, the depth 

of the spalling is another factor that may influence detection performance. In some 

cases, the spalling is too shallow and not distinct enough on the range image. The 

minimum size of spalling to be detected can be adjusted as a parameter in the 

automatic algorithm; however, a lower limit that is too small may introduce 

additional false positives into the spalling detection. On the other hand, GDOT only 

requires recording spalling sites whose areas are larger than 1.5’’x6’’. Through a 

rough measurement on the range image, the length of the spalling in  FIGURE 

3.38(a) is about 2.4 inches (around 60mm), which does  not have  to be recorded. 
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 Asphalt-patched spalling: as shown in FIGURE 3.38(b), some spalling sites have 

already been patched with asphalt in previous maintenance. Although some asphalt 

patches may not be in good condition, they still reduce the distinctiveness of spalling 

on concrete pavement and introduce the potential for false positives in spalling 

detection. 

     

    (a) Undersized Spalling        (b) Asphalt-patched Spalling  

FIGURE 3.38: Examples of false negative cases of spalling detection 

False Positive Cases 

Based on the review of the spalling detection results on the entire test site, some false 

positive cases are also identified. These cases can generally be classified into three 

different types: 

 Spalling on severe cracking / broken slab: As mentioned in the previous section, 

spalling can occur along both transverse and longitudinal cracking on concrete 

pavement, which usually indicates a high severity level of cracking. The spalling 

detection algorithm itself cannot differentiate spalling along joints or along cracks 

and, therefore, introduces some false positive cases through the validation test (as 

shown in FIGURE 3.39 (a)). Since we have already validated the joint detection 

algorithm on concrete pavement, these false positives can easily be removed as a 
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follow-up step after spalling detection by comparing the location of detected spalling 

and joints. 

 Shoulder-joint distress: This type of distress is caused by vertical movement in 

concrete slabs; it usually happens on the shoulder area right after a transverse joint. It 

has some characteristics similar to spalling and is also extracted by the spalling 

detection algorithm (as shown in FIGURE 3.39(b)). Although these results are false 

positive for spalling detection, it does reveal the possibility of using the spalling 

detection algorithm to detect and measure this type of shoulder-joint distress. More 

details will be presented in the next section. Similarly, false positives can easily be 

removed by comparing the location of detected spalling and transverse joints. 

 Coring: The quality control of concrete construction usually requires core drilling on 

the concrete surface. The deep coring has significant elevation changes and, 

therefore, is captured as false positives in some cases (as shown in FIGURE 3.39(c)). 

These false positives can also be removed based on location information.  

Overall, although quite a few false positive cases are observed through the validation test, 

almost all of them can be eliminated by comparison with the detected joint location; 

therefore, these false positive cases should not have a significant influence on the real-

world implementation of the automatic spalling detection algorithm.  

     

(a) Cracking             (b) Shoulder-Joint Distress                   (c) Coring 

FIGURE 3.39: Examples of false positive cases of spalling detection 
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Detection Accuracy vs. Spalling Size 

To find the relationship between the spalling size and detection accuracy, we compared 

the missed cases and the correctly detected cases in terms of spalling size. According to 

the definition in the LTPP manual, we treat the distance from the furthest edge of the 

spalling to the joint as the spalling size. So, for longitudinal spallings, the size is in the 

transverse direction, and for transverse spallings, it is in the longitudinal direction.  An 

example is shown in FIGURE 3.40 (a).   In some cases, the spalling is located in the 

intersection between longitudinal and transverse joints; we use the longer distance to 

either joint in two directions as the spalling size, shown as FIGURE 3.40 (b). 

         

      (a) Spalling on a single joint               (b) Spalling in the intersection 

FIGURE 3.40: Examples of spalling size measurement 

The detection results are reorganized according to the measured spalling size, and the 

obtained frequency for each size group is shown in FIGURE 3.41 and Table 3.8. It can be 

seen that the software can hardly detect  spalling sizes smaller than 50 mm; the software 

can detect some spalling sizes larger than 50 mm but smaller than 90 mm,  but the 

accuracy is not very good (59%);  for spalling sizes larger than 90 mm, the detection 

accuracy becomes much better (90%). One of the reasons for these results could be that 

the software module was originally designed for pothole detection; though the spalling 
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has characteristics similar to potholes, spalling tends to be much smaller. So, the pothole 

detection module may have some internal filtering mechanism that eliminates small 

candidates and reduces computation time, which won’t affect pothole detection but could 

cause false negative spallings. To examine such an assumption, we developed our own 

detection algorithm that successfully detected most of the cases missed by the software 

module and using the same dataset. The test indicates that the 3D data have the capability 

to provide desired accuracy for spalling detection, and in cases of small-sized spallings, 

future algorithm modification may help improve the detection accuracy. 

 

FIGURE 3.41: Frequency vs. spalling size 
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Table 3.8: Software Detection Accuracy for Different Spalling Sizes 

Spalling size / mm ≤50 50-90 >90 Total 

Missed cases 7 11 3 21 

Detected cases 2 16 47 65 

Accuracy 22% 59% 90% 76% 

4.4 Summary 

For automatic concrete pavement spalling detection using a 3D laser data, the major 

findings are summarized as follows: 

First, the 3D laser technology shows overall acceptable performance for automatic 

spalling detection on concrete pavement. Two test sites were selected on interstate 

highways I-516 and I-16 to evaluate the spalling detection performance. The ground truth 

was established by manually reviewing the collected range images. The automatic 

spalling detection shows accurate results: 65 out of 86 spalling locations were detected, 

which provides a detection precision of 75.6%. The spalling detection is also robust to 

different spalling locations and shapes.  

Second, two types of representative false negative cases are observed, including 

undersized spalling and asphalt-patched spalling. Undersized spalling may not influence 

the detection performance in real-world implementation, since GDOT’s current manual 

survey practice already has a minimum requirement for the size of spalling to be 

recorded. Asphalt-patched spalling is expected to impact the detection accuracy; 

however, the percentage of this type of cases is minor in the selected test sites. 
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Third, false positive detections are also observed through the review of the experimental 

results, including three major types: crack spalling, shoulder-joint distress, and coring. 

Most of these false positives can be removed by comparing their locations with detected 

transverse joints. 

Fourth, the detection accuracy of the built-in spalling detection software varies for 

locations with different sizes of spalling. Spalling less than 50 mm wide can hardly be 

detected; between 50 and 90 mm wide, the detection accuracy is better, but not 

satisfactory; for spalling locations more than  90 mm, the accuracy becomes quite good. 

Such results may due to the internal filtering mechanism of the algorithm to reduce 

computation time. Our own detection algorithm has successfully detected most cases 

missed by the software, indicating the capability of the data to provide the desired 

accuracy. 

5. Validation of Concrete Pavement Shoulder Joint Distress Detection 

Shoulder joint distress is another type of concrete pavement distress that occurs along the 

pavement shoulder. GDOT defines shoulder joint distresses as a depression in the 

shoulder that is caused by the vertical movement in the concrete slabs under load, which 

may cause material to be pumped out at the joint (as shown in FIGURE 3.42). Since this 

distress takes the form of large spalling locations along the roadway edge, this section 

will explore the possibility of an automatic spalling detection algorithm that can identify 

the location and extent of shoulder joint distresses using 3D pavement data. 
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FIGURE 3.42: Example of shoulder joint distress (GDOT 2003) 

5.1 Experimental data 

The experimental data of the validation test were collected on interstate highway I-16 

near Savannah, Georgia, with concrete pavement on the selected test site (as shown in 

FIGURE 3.43). 

 
FIGURE 3.43: Selected I-16 test site on concrete shoulder joint distress detection  
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5.2 Experimental design 

Unlike for cracking, faulting, and spalling, it is difficult to provide a quantitative ground 

truth for shoulder joint distresses due to their continuity and large extent. Therefore, we 

manually selected several slabs at the test site. Each of these slabs was marked with a 

unique ID, and the shoulder joint distresses along these slabs were roughly drawn on a 

distress map for comparison purposes. Digital photos of the selected slabs were taken 

from the road shoulder to track the detailed distress conditions and provide certain 

references through the validation. Then, the automatic spalling detection algorithm was 

applied on these slabs to see if it could capture the location and extent of shoulder joint 

distresses. The detection results were visually compared to photos and distress maps 

taken from the field survey. 

5.3 Validation on I-16 test site 

FIGURE 3.44 to FIGURE 3.47 show the experimental results of four representative 

cases. Images (a) and (b) show the intensity and range images of the selected location; 

Image (c) shows the detected shoulder joint distress (blue area); and Image (d) shows the 

digital photo at the same location. Based on the experimental results, it can be observed 

that although it is difficult to identify them in intensity images, shoulder joint distresses 

appear quite distinctively in range images. Having characteristics similar to spalling 

(elevation drop), their larger extents and areas actually simplify the automatic detection. 

Based on visual judgment, the detection results are consistent with field observations, 

including distress maps and digital photos. 
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(a) Intensity Image                     (b) Range Image 

      

                     (c) Automatic Distress Detection                (d) Field Photo 

FIGURE 3.44: Shoulder-joint distress detection on Slab #C6 

      

(a) Intensity Image                     (b) Range Image 
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                     (c) Automatic Distress Detection                (d) Field Photo 

FIGURE 3.45: Shoulder-joint distress detection on Slab #C6’ 

      
(a) Intensity Image                     (b) Range Image 

      
                     (c) Automatic Distress Detection                (d) Field Photo 

FIGURE 3.46: Shoulder-joint distress detection on Slab #C7 
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(a) Intensity Image                     (b) Range Image 

      

                     (c) Automatic Distress Detection                (d) Field Photo 

FIGURE 3.47: Shoulder-joint distress detection on Slab #C9 

5.4 Summary 

For automatic concrete pavement shoulder joint distress detection using a 3D laser data, 

the major findings are summarized as follows: 

First, the 3D laser technology has shown the potential to capture the shoulder joint 

distresses. Because of the distinctive elevation change of such distresses on the pavement 

shoulder, they can also be automatically identified following principles similar to spalling 
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detection. The experimental results on the test sites are visually consistent with field 

observation. Furthermore, the automatic detection results are associated with the 

quantitative area and depth of the distress, which provides an objective and consistent 

way of making severity level judgments and extent reporting.  

Second, it should be noted that due to the transverse coverage of the current 3D line 

laser-imaging system (about 4 meters), it is not guaranteed that the shoulder area will be 

captured while the vehicle is driving in the outside lane. Therefore, if this specific type of 

distress is targeted, it is suggested that data collection along the edge line be conducted; 

in this case, users should be aware that a narrow strip near the lane line might not be 

captured by the system. 

 Third, current shoulder joint distress detection is conducted using the automatic spalling 

detection algorithm, since both distresses share some similar characteristics. However, it 

is still suggested that a separate detection algorithm be developed to: 1) narrow the region 

of interest to the shoulder area to speed up the detection process and reduce the number 

of potential false positives and 2) deal with significant shoulder drop-off. 

6. Summary 

Emerging 3D laser technology has demonstrated its great potential to accomplish 

automatic distress detection on concrete pavement. A series of comprehensive validation 

tests were conducted on selected test sites on interstate highways I-16 and I-516. Four 

different types of concrete pavement distresses were validated, and the major findings are 

summarized as follows:  
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For concrete cracking, the 3D laser technology shows overall acceptable performance 

when performing automatic crack detection. Automatic crack detection results were 

compared with manually digitized ground truth data through a buffered Hausdorff 

scoring method. The automatic crack detection shows quite accurate and robust results on 

longitudinal cracks on the I-516 site; however, the crack detection performance on 

transverse cracks on the I-16 site was not as good. The false negative detection on 

transverse cracking can be explained by the larger data acquisition interval in the driving 

direction. As in asphalt pavement, the hairline cracks (thinner than 2 mm) are still 

challenging for automatic detection. Also, severe spalling and joint detection impact the 

crack detection performance, but only in a limited number of cases. 

For concrete faulting, it is feasible to collect faulting measurement at highway speed 

using a 3D laser system. Using the regression-based method, the automatic faulting 

measurements are quite consistent with manually measured ground truths using the 

Georgia Faultmeter in both a controlled lab test and a field test. With proper parameter 

configuration, the concrete joint module in the commercial software can also provide 

acceptable faulting measurement results.  

For concrete spalling, the automatic detection accuracy using the commercial software 

varies for different sizes. Spalling with widths larger than 90 mm can be successfully 

detected; between 50 and 90 mm wide, the detection accuracy drops but is still 

acceptable; spallings locations less than 50 mm wide can hardly be detected. Undersized 

spalling and asphalt-patched spalling are two common types of false negatives. Although 

some small spalling locations were not successfully detected, they can be clearly 

observed on a range image. Therefore, it is believed that there is still room to further 
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improve the automatic spalling detection algorithm. Some false positives were   observed 

in the experimental test, including crack spalling, shoulder-joint distress, and coring. 

Most of these false positives can easily be removed by comparing their locations with 

detected transverse joints. 

For shoulder joint distresses, this study explores the feasibility of using the automatic 

spalling detection algorithm on shoulder joint distress detection. The larger extent and 

depth of shoulder joint distresses make them quite distinctive in range images and 

relatively straightforward to detect. On the selected representative cases, the automatic 

detection results are visually consistent with field observations (including distress maps 

and digital photos). However, it should be noted that, due to the transverse coverage of 

the current 3D laser system (about 4 meters), it is not guaranteed that the shoulder area 

will be captured while the vehicle is driving in the outside lane. Also, developing a 

specific shoulder joint distress detection algorithm to further ensure accurate and robust 

detection is recommended.  
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Chapter 4 Feasibility Study of Pavement Marking 

Retroreflectivity Condition 

1. Introduction 

Pavement marking is one of the most important traffic control devices and is closely 

related to highway safety. It provides critical delineation information for road users. 

Pavement marking retroreflectivity is the most important feature of pavement marking to 

maintain its vital functionality during nighttime.  FHWA has proposed a set of 

requirements as a mandate for the minimum pavement marking retroreflectivity and 

defined the requirements in the Manual on Uniform Traffic Control Devices (MUTCD, 

2009). Public transportation agencies, including state DOTs, must design and implement 

their programs for pavement marking management to maintain retroreflectivity at or 

above the minimum level.  

Traditionally, two manual methods are commonly used by public transportation agencies 

to collect pavement marking retroreflectivity condition data:  nighttime inspection and 

retroreflectometer measurement. For nighttime inspection, a windshield survey is carried 

out at night by field engineers driving along the roadways and recording the road sections 

with poor retroreflectivity. Although nighttime inspections can be conducted at driving 

speed, the condition assessment results are subjective and inconsistent. A 

retroreflectometer measurement is conducted by making sampled retroreflectometer 

readings along the roadway. Although retroreflectometer readings can be consistent, as 

defined by the American Society for Testing and Materials (ASTM), field engineers need 

to conduct the measurement while being physically on the road. Such an operation is not 
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only labor-intensive and time-consuming, but, more importantly, they may be dangerous 

because engineers will be exposed to traffic. Therefore, there is a need for a safe and 

cost-effective pavement marking retroreflectivity condition assessment method that 

produces reliable and consistent results so that public transportation agencies can 

implement effective pavement marking management plans.  

In recent years, many emerging sensing technologies have become technically mature 

and commercially available, e.g., computer vision, mobile LiDAR, scanning laser 

profiler, etc. It is important to explore feasible technologies and technology applications 

that can support a mobile pavement marking retroreflectivity condition assessment. 

Because a LiDAR system uses a principle similar to the one a retroreflectometer uses to 

measure retroreflectivity and because USDOT RS-GAMS Phase 1 has demonstrated the 

potential for applying LiDAR technology to the condition assessment of traffic sign 

retroreflectivity, a LiDAR system holds the potential to be applied to pavement marking 

condition assessment. Therefore, the objective of this study is to explore the feasibility of 

measuring a pavement marking’s retroreflectivity condition using LiDAR technology.  

Section 1 presents the background and identifies the objective of this study. Section 2 

presents a literature review regarding the current pavement marking retroreflectivity 

condition practice and the previous studies on mobile assessment. Section 3 presents the 

research method. Section 4 presents the experimental test and the preliminary results. 

Section 5 presents the findings and recommendations for future research.  
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2. Literature Review 

2.1 Significance of Pavement Marking 

Pavement markings are beneficial to drivers for their significance in keeping drivers on 

track and ensuring driving safety by conveying continuous information of “the intended 

travel path for short-range operations and the roadway alignment for long-range 

delineation” to drivers (Carlson et al., 2009). Recognizing the significance of pavement 

marking on driving safety, traffic agencies invest millions of dollars in maintaining the 

quality of pavement marking in the United States each year. Retroreflectivity is a widely 

accepted performance measure of pavement markings. To maintain the retroreflectivity 

of pavement marking at a serviceable level within a reasonable budget, researchers have 

devoted many efforts to set up minimum criteria for pavement marking retroreflectivity. 

Based on these research findings, FHWA has published minimum criteria of 

retroreflectivity through the new MUTCD and has required that all public traffic agencies 

design their own programs to maintain the retroreflectivity of pavement markings at or 

above the minimum level.  

Engineers have been evaluating the effect of pavement marking on the improvement of 

driving safety ever since the 1940s. Most studies have concluded that pavement markings 

do improve driver/roadway safety. Centerlines, for example, as a major pavement 

longitudinal marking, have been proven effective in keeping drivers from shifting from 

the road's centerline to the right side of the road, as well as motivating them to drive,  

remarkably, slower (Taragin, 1947). As for edge lines, a before-and-after study in 

Connecticut has proven that the presence of edge lines can reduce accidents. Besides, 
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centerlines also have some influence on slowing driving speed (Williston, 1960). A 

similar study (Basile, 1962) in Kansas has observed a reduction in fatalities on two-lane, 

rural highways but no significant changes in the total number of injuries with the 

presence of edge pavement markings. However, these very early studies all adopted the 

simplest research methods, and no details of the research processes are available. These 

methods have limitations; for example, they cannot exclude the impact of other factors, 

such as weather, on roadway safety. Apparently, these studies failed to consider the 

differences in the retroreflectivity conditions of pavement markings in their analysis. A 

more recent experimental study (Tsyganov et al., 2006) adopted a before-and-after study 

approach to quantifying the effect of edge lines on improving safety on the rural two-lane 

highways in Texas.  In the study, a statistical crash analysis found that “edge-line 

treatments on rural two-lane roadways may reduce accident frequency up to 26% and the 

highest safety impacts occur on curved segments of roadways with lane widths of 9 to 10 

ft.” In addition, the researchers also conducted stationary traffic observation and driving 

tests under different circumstances. However, an increase in speed by an average of 5 

mph, or 9%, on both straight and curved highway segments, instead of a speed drop, has 

been observed in the tests. Even though there are some conflicts about the impact of the 

pavement marking on the driving speed, these studies all agree with the conclusion that 

the presence of pavement markings improves roadway safety, especially when the 

pavement marking conditions are particularly poor. Smadi et al. (2008) studied the crash 

records and established spatial correlations with the pavement marking retroreflectivity 

using data from the entire Iowa primary road system. Although the results from the entire 

dataset didn’t show that lower pavement marking retroreflectivity correlates to a higher 
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crash rate, the results with only lower retroreflectivity (≤ 200 mcd/m2/lux) indicates a 

statistical significant negative correlation with the crash rate (i.e., when the pavement 

marking retroreflectivity is lower than 200 mcd/m2/lux, crash rates increase as the 

pavement marking retroreflectivity decreases).    

2.2 Research on Minimum Retroreflectivity Level 

Research has shown that pavement marking will work effectively as long as the 

pavement marking meets minimum criteria, but there is no proof that shows higher 

retroreflectivity would improve roadway safety. Therefore, it’s necessary to determine 

the minimum level of acceptable retroreflectivity. In the 1990s,  FHWA sponsored the 

development of a computer model, named Computer-Aided Road-Marking Visibility 

Evaluator (CARVE), to establish a set of criteria for minimum level of retroreflectivity 

based on the posted speed limits and the presence of retroreflective, raised pavement 

markers. Then, FHWA included the research results as part of an internal report and 

recommended criteria for minimum retroreflectivity. Many other institutes and DOTs 

have, also, developed general recommendations for the minimum criteria of 

retroreflectivity. Although these recommendations vary, they all ranged from 90 to 130 

mcd/m2/lux (Debaillon et al., 2008). With the application of new materials and 

technologies in pavement markings, these criteria are no longer applicable. The 

University of Iowa improved the CARVE to the Target Visibility Predictor in order to 

keep pace with new pavement marking technology. A study (Debaillon et al., 2008) 

adopted this new system and incorporated many new inputs to establish updated criteria. 

In this research, the researchers also included pavement surface type (e.g. asphalt or 

concrete) and vehicle type (passenger or freight). From this study emerged a set of 



 

106 

 

minimum pavement marking retroreflectivity recommendations for typical conditions on 

U.S. highways. However, this research only employs a deterministic model (i.e., TarVIP) 

based on illumination physics and vehicle/roadway geometry. None of the results were 

validated using actual field retroreflectivity measurements or drivers' perceptions.  

Therefore, further research is necessary to validate the results. Recently, the new 

MUTCD has published a recommendation for minimum retroreflectivity but does not 

require forceful implementation because of the budget concerns of DOTs. 

The presence of pavement markings is essential for driving safety, and it is significant 

that the pavement markings should be at or above a minimum level (i.e., at least visible to 

the drivers). When retroreflectivity is low, driving risk can increase significantly. In order 

to maintain the visibility of pavement markings or keep the retroreflectivity above the 

minimum criteria, methods for quantitative measurement of retroreflectivity are needed 

by transportation agencies for pavement marking management. The following section 

reviews different retroreflectivity measurement methods. 

2.3 Retroreflectivity Measurement Methods 

Visual Inspection 

Visual inspection is a measurement practice in which evaluators stand by the roadside or 

drive along the road to visually rate the condition of pavement marking retroreflectivity.  

Choosing to drive along the road could be a very efficient method that imposes little 

impact on the traffic. In addition, visual inspection is also very inexpensive because no 

special devices are needed, and only two engineers are needed for the whole evaluation 

process, one for driving and one for evaluating. However, human eyes are not reliable 

because, when they encounter different background contrasts, the brightness of an object 
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will look very different. Thus, one evaluator’s rating results usually differ from another’s 

because of expertise, experience, and subjectivity. Research conducted by the Texas 

Department of Transportation (TxDOT) (Benz et al., 2009) tried to correlate the visual 

inspection results with data collected by a handheld retroreflectometer and found that 

there was a correlation between the average rating of several evaluators (8 different 

evaluators in the research), but the correlation was sometimes  inconsistent. However, 

when individual ratings were analyzed, significant biases from the handheld 

retroreflectometer readings appeared; even training seems to be ineffective in improving 

accuracy.  Factors other than retroreflectivity, including facing angle, lighting condition, 

etc., may also impact the visual condition assessment (FHWA, 2007).  In conclusion, 

even though visual inspection has advantages, it has the drawback of being qualitative 

and subjective and, therefore, cannot be used as a standardized method.  

Handheld Retroreflectometer 

Using handheld retroreflectometers provides a method for quantitative measurement of 

pavement marking retroreflectivity. A handheld retroreflectometer could be placed on a 

pavement marking and readings of the pavement marking retroreflectivity at each spot 

can be taken. Standard procedures are available for conducting measurement with a 

handheld retroreflectometer, and the operation can be handled with little training. With 

the standard operation, both the repeatability and reproducibility can be controlled. The 

price of a handheld retroreflectometer is usually $12,000 to $25,000 per unit depending 

on the model, but it is much less expensive than a mobile device ($80,000 without a van) 

(Benz et al., 2009), which will be discussed later. However, there are disadvantages to 

using a handheld retroreflectometer.  The measurement operation may require lane 
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closures and unsafe situations because the operators are exposed to traffic. Most 

importantly, a large number of samples can be expensive to acquire and process. Since 

measurement of retroreflectivity with a handheld retroreflectometer is a standard 

operation, a brief introduction of available ASTM standards is provided in the following 

sections.  

ASTM E1710-11 has proposed standard procedures for retroreflectivity measurement 

under dry conditions with a portable retroreflectometer at the standard “30 meter 

geometry” (FIGURE 4.1). In addition, this standard has also described a standard 

configuration of the retroreflectometer that all products should follow. 

 

FIGURE 4.1: Standard geometry (Bernstein. 2000) 

ASTM E2176-08, on the other hand, has provided standard procedures for 

retroreflectivity measurement under continuous wetting conditions with a 

retroreflectometer. This condition simulates a scenario in which it is raining (FIGURE 

4.2). 
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FIGURE 4.2: Illustration of continuous wetting measurement (ASTM E2176) 

ASTM E2177-11 is available as standard procedures (i.e. wet recovery) for measuring 

retroreflectivity under wet conditions, which is similar to the scenario in which it has 

rained before measurement (FIGURE 4.3). However, it was claimed that this method 

does not necessarily reflect the condition of pavement marking after rain has fallen. A 

portable or mobile retroreflectometer could be used but should comply with the 

requirements for the apparatus described in ASTM E1710-11. 

 

FIGURE 4.3 Illustration of wet condition (ASTM E2177) 

Data collected following these standard procedures usually have good repeatability and 

reproducibility in practice. However, these standards have only described the application 

of a handheld retroreflectometer. Although a mobile retroreflectometer is also mentioned 

in ASTM E2177-11, it is not described in detail. In the following section, a few available 

mobile methods will be discussed. 

Mobile Retroreflectometer 
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Using a mobile retroreflectometer provides a means and a method for network-level data 

collection. Usually, a mobile retroreflectometer system consists of a van, a mobile 

retroreflectometer, and a computer system for data storage. Retroreflectometers have 

some very attractive advantages. Mobile retroreflectometers are able to collect network-

level data, and they can be operated at highway speed and do not disrupt the traffic. 

However, the cost of a mobile retroreflectometer is about four times that of a handheld 

retroreflectometer. Besides, the mobile retroreflectometers require more training and 

maintenance. In addition, the readings of retroreflectometers can be inconsistent for many 

reasons. For example, a study (Benz et al., 2009) found that the mobile retroreflectometer 

is very sensitive to two factors and could cause inconsistent data. The sensitivity analysis 

found that distance from the pavement marking to the sensors and the position across the 

measurement window have the most significant impact on the mobile retroreflectivity 

measurement. Unlike the handheld retroreflectometer, no standard operating procedures 

are available for mobile retroreflectometers. Thus, false calibration and operation can 

result in very inconsistent data and, ultimately, raise concerns about mobile 

retroreflectometers among the state DOTs.  

LaserLux, as an example of mobile retroreflectometer available for DOTs since the 

1990s, has been evaluated by the TxDOT (Benz et al., 2009). It was proven that many 

factors, such as the measuring of geometry, temperature, and pavement profile, had 

significant influence on the accuracy of the collected data. Even though there was a 

motion compensation system incorporated into the LaserLux, the errors still could not be 

removed. Similarly, other currently available mobile retroreflectometers all either have 

problems in accuracy or need a complex set-up and calibration process (Lee, 2011). The 
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National Cooperative Highway Research Program (NCHRP) Innovations Deserving 

Exploratory Analysis (IDEA) program (Lee, 2011) has recently proposed an advanced 

system to measure marking retroreflectivity at highway speed. The system under research 

has a tracking system to keep the measurement geometry automatically and a calibration 

system to simplify the process for calibration. Researchers claim that experimental tests 

have shown the accuracy of the system, but it still needs further evaluation and validation 

in the field. 

Currently available mobile retroreflectometers are still not fully validated for 

implementation; thus, evaluation and improvement efforts are still ongoing. Besides, it is 

also worthwhile to explore the potential application of emerging technologies. 

2.4 LiDAR Technology 

LiDAR is an optical remote sensing technology that can measure the distance to or from 

other properties of a target by illuminating the target with light, often using pulses from a 

laser (Cracknell et al., 1991). The retro-value in LiDAR is the percentage of the 

redirected energy from the target divided by the emitted energy from LiDAR. The 

principle is consistent with FHWA’s definition of retroreflectivity. A LiDAR-equipped 

vehicle has been used to collect pavement inventory data, but it has   not been specifically 

designed for retroreflectivity measurement.  However, since it applies a similar principle 

as a retroreflectometer, it would be promising to study the feasibility of measuring 

pavement marking retroreflectivity using LiDAR technology.  
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2.5 Summary 

Pavement marking plays an important role in driving safety. The retroreflectivity 

condition is identified as the most important condition for pavement marking and draws 

major concerns from public transportation agencies because poor retroreflectivity has 

been proven to be strongly correlated with nighttime crash rates, especially under 

undesirable conditions, such as rain. Traditionally, state DOTs conduct manual condition 

assessment using visual inspection and handheld retroreflectometers. Evaluation by 

visual inspection is subjective and usually inconsistent. Assessment by handheld 

retroreflectometer is usually accurate and consistent with proper operation. However, it is 

so labor-intensive and time-consuming that it cannot fulfill the need for a continuous 

condition assessment covering the full network. It may, also, require extra resources for 

traffic control, and it may expose field engineers to open traffic. A good alternative is the 

mobile retroreflectometer, but available devices, such as the LaserLux, require a very 

complex process of calibration before each data collection. Any improper operation or 

setup could cause faulty data to be collected. In addition, many factors have proven to 

significantly impact the accuracy and consistency of mobile retroreflectometers. There is 

still a need to explore alternative mobile pavement marking retroreflectivity condition 

assessment methods. As the LiDAR system has already been used for traffic sign 

inventory and retroreflectivity condition assessment by utilizing the retro-intensity value 

that can measure the ratio of light redirected from an object to the light emitted from the 

laser, an alternative mobile method is possible for pavement marking retroreflectivity 

condition assessment.  
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3. Research Method 

The objective of this study is to evaluate the feasibility of conducting pavement marking 

retroreflectivity condition assessment using LiDAR technology by establishing the 

preliminary correlation between the retroreflectivity readings measured by handheld 

retroreflectometers and the LiDAR retro-intensity values. The proposed research method 

is composed of four steps: test site selection, data collection, data preprocessing, and data 

analysis.  FIGURE 4.4 shows the detailed procedures of this research.  

 Test site selection: To establish a reliable correlation, the pavement marking 

retroreflectivity data should consist of complete coverage of different conditions. 

Thermoplastic was selected as the focused material in this study, as it is popularly 

used on state routes and interstates in Georgia and many other states. To include 

the complete coverage of different conditions, a nighttime visual inspection was 

first conducted to purposely include road sections containing different 

retroreflectivity conditions. Second, a preliminary retroreflectivity measurement 

using handheld retroreflectometer (at large measurement interval, e.g. 50 ft.) was 

conducted to further narrow down the road sections with different conditions. 

Third, detailed retroreflectivity measurements using a retroreflectometer (at small 

measurement intervals, e.g. 1 ft.) were conducted to collect the comprehensive 

pavement marking condition within each candidate section.   
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FIGURE 4.4 Flowchart of establishing correlation retroreflectivity and retro-
intensity 

 Data collection: To fully cover the selected road sections, three runs of LiDAR 

data were collected using the GTSV. The three runs of data were also used to 

assess the repeatability of the measurement. The corresponding retroreflectivity 

measurement using a retroreflectometer was also conducted right after the LiDAR 

data collection.  

 Data preprocessing: The retroreflectometer readings are first averaged to obtain 

the retroreflectivity of each sample spot. The GPS of the LiDAR data are first 
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post-processed to obtain a higher GPS accuracy;  then, the retro-intensity data are 

manually extracted from the LiDAR data using Trimble Analyst Software.  

 Data analysis: Once both retroreflectivity readings and the corresponding retro-

intensity values are collected, the correlation can be established based on their 

spatial association. The detailed procedures are discussed in the experimental test 

section. 

4. Experimental Tests 

Prior testing results show that pavement markings that are made of various materials have 

different retroreflectivity values. This research focuses mainly on thermoplastic and 

waterborne paint, the most popular pavement marking materials. After obtaining the 

LiDAR retro-intensity data and the retroreflectivity is measured at the same field 

locations, we conducted a regression analysis to explore the correlation between the 

LiDAR retro-intensity values and the retroreflectivity. With the correlation, critical 

values that differentiate acceptable pavement markings from unacceptable ones will be 

established for retro-intensity and used to assess the pavement markings’ condition.  

4.1 Data Collection 

Data collection that covers retroreflectivity conditions from extremely bad to brand new 

involves the selection of a test site using the visual inspection method. Through this 

method, Ferst Drive (between State Street and Techwood Drive on the Georgia Tech 

campus) was selected for thermoplastic pavement marking testing.  Hemphill Avenue and 

17th Street were selected for waterborne paint pavement marking testing. To examine the 

detailed trend on the selected test sections, preliminary retroreflectivity measurements 
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were conducted using a StripeMaster II handheld retroreflectometer to get an idea of the 

distribution of retroreflectivity at the selected sites.  Based on the trend, more detailed test 

sections were selected so that the retroreflectivity conditions were distributed evenly 

from bad to brand new.  For thermoplastic and waterborne paint pavement markings, 

details about the test section selection are introduced as follows:  

Thermoplastic 

Thermoplastic pavement markings on Ferst Drive between State Street and Techwood 

Drive on Georgia Tech’s Atlanta campus were installed by Georgia Tech facility 

management personnel.  The thermoplastic pavement markings are of various conditions 

because of uneven aging and deterioration rates. FIGURE 4.5 shows the trend of the 

retroreflectivity along the selected road segment. 

 

FIGURE 4.5: Pavement marking retroreflectivity on Ferst Dr. on Georgia Tech 

campus 
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It can be observed that the selected thermoplastic test site consists of varying 

retroreflectivity conditions ranging from 30 mcd/m2/lux to more than 600 mcd/m2/lux. 

Based on the information of the general condition in FIGURE 4.5, twelve test locations 

covering different ranges of retroreflectivity were selected. Each condition group was 10-

ft in the longitudinal direction and contained 10 samples spaced one foot apart. To 

establish a reliable correlation, the retroreflectivity condition within each 1-ft section was 

maintained homogeneously. The detailed range for each condition group is shown in 

Table 4.1. 

Table 4.1: Retroreflectivity of Thermoplastic Test Sections 

Range (mcd/m2/lux) No. of Test Sections 

0-50 3,10 

50-100 1,4,5 

100-200 2 

200-300 7,12 

300-400 6,11 

400-500 9 

500-600 10 

The exact locations of different condition groups were spray-painted on the pavement to 

ensure that the location measurement from different times or from different sensors were 

consistent. After marking the samples in the field shown in FIGURE 4.6, the 

retroreflectivity for each sample was collected three times with a handheld 

retroreflectometer in compliance with the ASTM E1710-11 standard, and then the entire 

test site was surveyed by the GTSV three times.  
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FIGURE 4.6: An example of selected thermoplastic test section 

Waterborne Paint 

Hemphill Avenue and 17th Street, shown in FIGURE 4.7, were identified as test sites for 

the road segments that were installed with waterborne paint markings under various 

conditions.  We used an approach similar to the approach we had used to determine the 

test sections for thermoplastic markings. We first conducted a preliminary rough 

measurement of the pavement markings. FIGURE 4.8 shows the results. 

 

FIGURE 4.7  Test sites of waterborne paint markings 
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FIGURE 4.8  Pavement marking retroreflectivity condition on Hemphill Avenue 

and 17th Street 

It can be observed that the selected test sites contain pavement markings with various 

conditions from 0 to 450 mcd/m2/lux.  Based on the trends on the road segments, 16 test 

sections were selected; eight sections were on Hemphill Avenue, and eight sections were 

on 17th Street.  The markings selected on Hemphill Avenue are indicated by dashed lines, 

and each dashed line is segmented into samples 1 foot apart.  On 17th Street, the test 

sections were also sampled one foot apart with 10 samples in each section. Table 4.2 

shows the detailed distribution of conditions of the test sections. 

Table 4.2: Retroreflectivity of Thermoplastic Test Sections 

Range (mcd/m2/lux) No. of Test Sections 

0-50 1, 2 

50-100 3, 4, 7 ,8 

100-150 5, 6, 11 

150-250 12, 13 

250-350 9,10,14,15 

>350 16 
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4.2 Data Extraction 

Trimble Trident 3D Analyst software was used to extract the data.  All the samples were 

extracted into a Geographic Information System (GIS) layer through the video log images 

that were synchronized with the mobile LIDAR, shown as the green line in FIGURE 4.9.  

Then, the layer was mapped onto the calibrated LiDAR point-cloud, shown in FIGURE 

4.10. At each sample location, retro-intensity values of the LiDAR points were manually 

extracted, shown in FIGURE 4.10. As the LiDAR device used in this study (i.e. Riegl 

LMS-Q120i) can acquire 10,000 points per second, at least three retro-intensity values 

could be obtained to associate with each sample section (i.e., a 1-ft section in the 

longitudinal direction). For example, the yellow rectangle shown in FIGURE 4.11 

represents the actual 1-foot test section. Although there are ten LiDAR points cast over 

this section, only the middle point fully cast on the pavement marking can be used for 

establishing correlation(the highlighted point in red circles shown in FIGURE 4.11). 

Consequently, for each 1-foot section, approximately three retro-intensity values are 

associated. For the points that partially cast over the pavement marking section, the retro-

intensity values might not reflect the true retroreflectivity condition because the energy 

was redirected by both the pavement and pavement marking.  
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FIGURE 4.9: Create a New Layer to Locate Sample Site in Videolog Image 

 

FIGURE 4.10: New Layer Mapped onto Point-cloud 
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FIGURE 4.11: Selected Points Included in the Analysis 

4.3 Data Analysis 

Handheld Retroreflectometer Measurement 

To show the general condition of the pavement markings in each test section, FIGURE 

4.12 and FIGURE 4.13 illustrate the average retroreflectivity and standard deviations.  

FIGURE 4.12 shows that thermoplastic sections with average retroreflectivity above 200 

mcd/m2/lux, where the standard deviations at the sections with high retroreflectivity, are 

significantly larger than the standard deviations of the sections with low retroreflectivity. 

One possible explanation for the large standard deviation is because of various traffic, 

weather, and sunshine conditions; the condition of the pavement marking deteriorates at a 

dynamic rate at different locations, so the condition of the pavement markings is not 

uniform across the 10-foot test section. However, when the retroreflectivity of the 
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pavement marking is below 100, the condition of the entire section is uniformly below 

the standard. 

 

FIGURE 4.12:  Average retroreflectivity on test sections thermoplastic markings 

 

FIGURE 4.13:  Average retroreflectivity on test sections waterborne paint markings 
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From FIGURE 4.13, it can be determined that waterborne paint shows much lower 

retroreflectivity than thermoplastic because even the retroreflectivity of the new 

waterborne paint is only around 400 mcd/m2/lux. In addition, a similar trend can also be 

observed for waterborne paint; that is, the retroreflectivity above 200 mcd/m2/lux shows 

the largest variation.  

LiDAR Measurements 

Repeatability 

To assess the pavement marking condition consistently, the LiDAR system should be 

able to measure retro-intensity with good repeatability. To evaluate repeatability, we 

plotted the retro-intensity values of all of the thermoplastic test sections for the three runs 

in FIGURE 4.14. 

The three runs by the GTSV overlapped quite well except for some of the sections with 

large variations, such as Sections 2 and 7. Closer examination reveals that the three runs 

have a maximum standard deviation of 0.0154 and an average standard deviation of 

0.0044, which still holds good repeatability over all the sections.  The retro-intensity of 

three runs for waterborne paint shows similar results.



 

125 

 

 

FIGURE 4.14: LiDAR retro-intensity repeatability 

Sensitivity to Temperature 

To assess the sensitivity of the LiDAR retro-intensity values to the temperature, a field 

test was conducted on I-16, which is near the Georgia Tech Savannah campus. The 

ambient temperature was collected at each hour for six consecutive hours (i.e. 9:00am – 

3:00pm). Two locations with different retro-intensity values were selected to measure the 

LiDAR retro-intensity values, including a pavement marking section with high retro-

intensity value and a concrete pavement surface section with low retro-intensity.  
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FIGURE 4.15 shows the results of the sensitivity. Both the pavement marking section 

(with high retro-intensity values) and the non-pavement marking section (with low retro-

intensity values) show only a small variance (0.0041 and 0.0039, respectively) as the 

temperature changed between 88.3°F to 119.5°F.  

 

FIGURE 4.15: LiDAR retro-intensity sensitivity to ambient temperature 

Based on the results derived from the sensitivity study, unlike the mobile pavement 

marking retroreflectivity measurement device, the LiDAR retro-intensity values are not 

sensitive to the ambient temperature. For example, the Florida Department of 

Transportation reported that “changes in temperature were observed to have a significant 

impact on measured retroreflectivity (using LaserLux)” (Fletcher et al., 2007). The 

insensitivity to temperature is a very important feature of the mobile LiDAR for 

establishing a reliable correlation between the retro-intensity and retroreflectivity in the 

following sections. It is also critical to ensure that the LiDAR-based pavement marking 

retroreflectivity condition assessment can produce a consistent outcome under different 

temperature conditions in practice once the correlation is established.  
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Correlation Establishment 

FIGURE 4.16 (a) to (d) shows the collected retroreflectivity and retro-intensity data for 

thermoplastic and waterborne paint materials. It can be determined that the retro-intensity 

values correlate well with retroreflectivity from condition group to condition group. 

Within the test sections, especially those with large retroreflectivity (over 200 

mcd/m2/lux), the retroreflectometer readings show a bigger variation due to the 

randomness of individual measurements at each single location, while the LiDAR retro-

intensity readings are continuously measured using the GTSV and shows more consistent 

values with smaller variations.  

 

(a) Retroreflectivity for thermoplastic 
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(b) Retro-intensity for thermoplastic 

 
(c) Retroreflectivity for waterborne paint 

 
(b) Retro-intensity for waterborne paint 

FIGURE 4.16: Retroreflectivity and retro-intensity for thermoplastic and 

waterborne paint materials 
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Regression using an exponential function was conducted with data from the 12 

thermoplastic test sections and 16 waterborne paint test sections. The results of the 

regression analysis are shown in FIGURE 4.17 and FIGURE 4.18. These results do not 

indicate any deterministic models between the retroreflectivity and the retro-intensity 

values from LiDAR, although high R2 values are observed, which indicates strong 

correlations. 

 

FIGURE 4.17: Correlation between retroreflectivity and LiDAR retro-intensity of 

thermoplastic material 
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FIGURE 4.18: Correlation between retroreflectivity and retro-intensity of 

waterborne paint material 

FIGURE 4.17 and FIGURE 4.18 show clear exponential relationships between the 

handheld retroreflectometer measurement and the LiDAR retro-intensity values for both 

thermoplastic and waterborne paint materials. The R-squares are as high as 0.9525 and 

0.9267, respectively. Even though the R-square for the waterborne paint is as high as 

0.9267, the middle-ranged test sections (150-250 mcd/m2/lux for waterborne paint) show 

an obvious deviation from the general trend. Instead of lump summing all the samples to 

form a single correlation, further investigations were conducted to study the cause of such 

a deviation. FIGURE 4.19 shows the deviation of the two selected locations for 

waterborne material; the blue color represents the data collected on the Hemphill Street, 

whereas the red color represents the data collected on 17th Street.  Although both 

locations have waterborne paint-based pavement markings, it is suspected that the 

different bead formula (i.e. bead shape and diameter distribution) could have an impact of 

the correlation results.  
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FIGURE 4.19: Different retro-intensity responses from different road sections 

The test sections on Hemphill Street and 17th Street were revisited to capture the 

microscopic images of the pavement markings.  FIGURE 4.20 shows two examples of 

the bead observed on Hemphill Street and 17th Street, respectively. There is some bead 

formula difference observed in both of the sections. Based on the observation of the 

microscopic images, it is suspected that Hemphill Street used Type I bead only, while 

17th Street used Type I and Type IV bead mix with a 4:1 or 3:1 ratio. The roundness of 

the Type IV glass beads collected on 17th Street is better than the ones on Hemphill 

Street. In addition, the glass bead density treated on 17th Street is much higher than 

Hemphill Street, which is a good explanation of the general retroreflectivity differences. 

There is a need to further investigate the impact of different bead formulas to establish 

the correlation between the retro-intensity values from mobile LiDAR and the 

retroreflectivity from the retroreflectometer.  
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            (a)                (b) 
FIGURE 4.20: Observation of microscopic glass beads on a) Hemphill Ave. and b) 

17th Street 

Although the derived correlations still require further validation, these correlations are 

promising for developing an automated pavement marking retroreflectivity condition 

assessment in the future. For example, assuming the derived correlation curve between 

the LiDAR retro-intensity and retroreflectivity were validated, if the critical value of 

retroreflectivity is 100mcd/m2/lux for separating pavement marking retroreflectivity 

condition, the condition assessment of pavement marking using the corresponding critical 

retro-intensity value could be conducted. The detailed analysis results in Table 4.3 show 

that if the experimental tests are performed on thermoplastic independently many times, 

95% of the mean retro-intensity will fall between 0.4035 to 0.4505 when the mean 

retroreflectivity for a sample spot is 100mcd/m2/lux.  If the experimental tests are 

conducted on waterborne paint, the 95% confidence interval will be 0.2973 to 0.4264 

with a mean retro intensity of 0.3561 for the retroreflectivity of 100mcd/m2/lux. These 
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critical retro-intensity values can be used to determine the threshold separating good 

pavement markings from poor ones.  

Table 4.3: Critical Retro-intensity Value 
Material Retroreflectivity Retro-Intensity Confidence Level Confidence Interval 

Thermoplastic 100mcd/m2/lux 0.4263 95% 0.4035 0.4505 

Waterborne paint 100mcd/m2/lux 0.3561 95% 0.2973 0.4264 

5. Conclusions and Recommendations  

This study focuses on exploring the feasibility of conducting a pavement marking 

retroreflectivity condition assessment using LiDAR technology by establishing the 

correlation between the retroreflectivity values measured by handheld retroreflectometer 

and the retro-intensity value acquired from a LiDAR point cloud. In this study, as the 

most commonly used materials of DOT maintained highway and local roads, 

thermoplastic and waterborne paint, were used to establish the correlation. The same 

procedure can be followed for establishing the correlation with other pavement marking 

materials. For thermoplastic, Ferst Drive on the Georgia Tech campus was selected as the 

test site to conduct the data collection; it consisted of 12 10-foot test sample sections and 

120 individual 1-foot testing sample sections. The retroreflectivity from the selected 

thermoplastic test sections ranged from around 30mcd/m2/lux to about 600mcd/m2/lux 

and covered the typical range for thermoplastic material from newly built to being 

completely deteriorated.  For waterborne paint, Hemphill Avenue and 17th Street were 

selected as the test site for data collection.  On Hemphill Avenue, eight dash lines and on 

17th Street, eight 10-foot test sections were measured with the StripeMaster II 

Retroreflectometer. The retroreflectivity from the selected waterborne paint test sections 
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ranged from around 30mcd/m2/lux to about 400mcd/m2/lux.  The following summarizes 

the findings of this study: 

 Retro-intensity values acquired from mobile LiDAR are not sensitive to ambient 

temperatures, having an average standard deviation of less than 0.0041. The retro-

intensity acquired from mobile LiDAR has good repeatability on the tested 

thermoplastic and waterborne materials with an average standard deviation of 0.0044.  

 There is an exponential correlation between retroreflectivity and retro-intensity with 

an R-square of 0.9525 for thermoplastic and 0.9267 for waterborne paint.   

 The correlation between retroreflectivity and retro-intensity might be sensitive to 

different bead formulas of the pavement marking material. Separate correlation 

curves might be needed not only for different pavement marking material category, 

e.g. thermoplastic, waterborne, etc., but also for different bead formulas under the 

same material category, e.g. different bead formulas, etc.  

 Based on the correlation results, the preliminary retro-intensity threshold 

corresponding to the minimum retroreflectivity (100mcd/m2/lux) defined in the 

MUTCD can be determined as 0.4263, with a 95% confidence interval ranging from 

0.4035 to 0.4505 for thermoplastic and 0.3521, with a 95% confidence interval 

ranging from 0.2973 to 0.4264. Using the established correlations, a mobile LiDAR-

based pavement marking retroreflectivity condition assessment method can be further 

developed.  

To achieve such a mobile method, the following recommendations for future research are 

suggested: 
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1) To validate the preliminary results using additional data collected with different bead 

formulas.  

2) To validate the established correlations for thermoplastic and waterborne pavement 

markings with additional data collected by both the GTSV and a retroreflectometer. 

3) To extend the experimental test to other pavement markings materials (e.g., tape, 

polyuria) following similar procedures proposed in this study. 

4) To validate the critical retro-intensity values that correspond to the minimum 

pavement marking retroreflectivity standards required by the MUTCD and 

transportation agencies by comparing with both a handheld retroreflectometer and 

nighttime visual inspection.  

5) To develop an automatic method for extracting pavement marking retro-intensity data 

from the LiDAR point cloud to streamline the condition assessment as proposed in 

this study. 
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Chapter 5 Long-term Monitoring of Crack Deterioration - A 

Pilot Study on SR 26 

1. Introduction  

Cracking is one of the predominant types of pavement distresses, mainly caused by 

vehicle repetitive load and pavement weathering.  Pavement crack characteristics, 

including crack position (wheelpath or non-wheelpath), orientation (transverse or 

longitudinal), length, width, density, etc., and deterioration behaviors (e.g. crack growth 

in length and width and changes in branch pattern) are essential for effective pavement 

management.  Modeling and forecasting the pavement crack conditions of a specific 

pavement section provides valuable information to transportation agencies for proper 

planning of maintenance and rehabilitation activities, budget estimation, and resource 

allocation.  Acquiring critical insight into pavement cracking deterioration behaviors is 

also crucial to support the validation of the MEPDG.  

A considerable number of efforts have been made to model pavement crack deterioration 

behaviors in literature. Many existing studies (Prozzi & Madanat, 2000; Hu, et at., 2012) 

used lab simulation data or controlled experimental test data, such as the American 

Association of State Highway Officials (AASHO) Road Test, which was an accelerated 

loading experiment (HRB, 1962). These studies suffered from several problems, 

including the fact that they were developed only for specific climate conditions and sub-

grade materials, and they used predetermined values for some parameters (Reger, et al., 

2013).  Therefore, it is difficult to use controlled experimental outcomes to fully model 

the actual pavement crack deterioration behavior due to the complicated roadway 
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conditions in the real-world environment.  On the other hand, data from actual in-service 

pavement sections subjected to the combined actions of highway traffic and 

environmental conditions are the most representative of the actual deterioration process 

(Prozzi & Madanat, 2004).  Some studies used the data from state departments of 

transportations’ (DOT) annual pavement condition surveys, such as Florida DOT’s crack 

survey data (Yang, et al., 1974; Nasseri, et al., 2009; Thomas & Sobanjo, 2013) and 

Washington state’s PMS (Reger, et al., 2013).  Loizos and Karlaftis (2005) used a data 

set collected from in-service pavements in 15 European countries.  However, these data 

collected in the field, tend to have a higher number of measurement errors than data 

collected in controlled experiments, as the data from the field are usually collected 

through visual roadside estimations or windshield surveys.  Furthermore, these data are 

mostly composite condition ratings and are reported on a per-mile or higher basis, which 

loses the critical granularity of detailed crack deterioration behaviors.  

The advances in sensor technology makes it possible to collect high-quality pavement 

surface data with 3D laser systems.  These data have been proven robust in crack 

detection (Tsai & Li, 2012) and enable the extraction of detailed information: crack 

length, width, orientation, etc. (Tsai, et al., 2014).  This has created a valuable 

opportunity for accurately and reliably collecting detailed pavement crack data in the 

field to study and gain insight into pavement characteristics/patterns and crack behaviors 

in a real-world environment.  The objectives of this study are 1) to evaluate the feasibility 

of using detailed crack data gathered in the field to support the study of multi-scale crack 

deterioration behaviors (e.g. individual single/branched cracks, and clustered sections, 

such as 100-ft., 1-mile, etc.) to identify the vulnerable and robust pavement sections/spots 
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with high and low deterioration rates; and 2) to identify the potential issues for the 

analysis of long-term monitoring data. Georgia State Route 26 was selected as a pilot site 

because it has had 3D pavement surface data collected on it for over the past four years. 

The results are presented and discussed in the subsequent contexts. 

2. Experimental Setup  

FIGURE 5.1 shows the selected project for this pilot study on Georgia State Route 26 / 

U.S. 80 between Milepost 5.5 and Milepost 11.5, which has, primarily, flexible 

pavements with dense graded asphalt surface as the top course.  According to GDOT’s 

traffic count data, the selected project had an AADT of 24,020, and a truck percentage of 

11.94% in 2013. It was resurfaced in 2004, when the surface course and part of the 

asphalt base course were replaced, but constant deterioration has been observed ever 

since.  

 

FIGURE 5.1: Selected project for crack deterioration analysis on GA State Route 26  

In this pilot study, the pavement surface data collected using GTSV on five different 

timestamps from October 2011 to December 2013 was used.  After the data acquisition, 
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the pavement surface data are represented in the format of range images, where each 

pixel on the image describes the elevation of the pavement surface. The crack detection is 

then conducted using the algorithm proposed in our previous study (Kaul, et al., 2012).  

FIGURE 5.2 shows the 3D laser imaging system and an example of pavement range 

image and the corresponding detected crack map. 

 

(a) 3D Laser Imaging System          (b) Range Image               (c) Detected Crack Map 

FIGURE 5.2: Illustration of data acquisition and crack detection  

3. Analysis at One-Mile Level  

The one-mile segment between Milepoints 7 and 8 is selected here as an example for 

demonstration purposes.  According to the COPACES database, which records the annual 

manual survey results conducted by GDOT pavement engineers, the overall composite 

condition rating of this specific segment drops from 60 to 53 over the same period of 

time.  However, such a composite rating is clearly insufficient to reveal where and how 

the pavement deterioration happens in detail.  With the proposed crack classification 

method (Tsai, et al., 2014), we can now compare the changes between the two 

timestamps side by side on different crack types, including their severity levels.  
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FIGURE 5.3 shows the comparison between crack deduct values between Dec. 6, 2011, 

and Dec. 7, 2013, across all 52 100-ft. sections on the selected one-mile segment. Each 

100-ft. section is represented by two consecutive bars; the blue one on the left is the 

deduct value for Dec. 6, 2011, and the yellow one on the right is the deduct value for 

Dec. 7, 2013.  FIGURE 5.3 (a) shows the crack-related deduct values composed from 

both load cracking and block/transverse (B/T) cracking, which are the two predominant 

crack distresses in Georgia. According to FIGURE 5.3 (a), the crack condition in some 

sections deteriorated significantly, especially at the beginning of this mile, while it 

remained almost unchanged in some other sections.  FIGURE 5.3 (b) and FIGURE 5.3 

(c) show the deterioration behaviors for two crack types, load cracking, and B/T cracking, 

respectively.  It can be observed that in most 100-ft. sections, no significant deterioration 

was observed on the load cracking, while the deduct values of B/T cracking changed 

quite a bit.  This further reveals that the crack deterioration on most of this mile is 

thermal related rather than load related. 

 
(a) Comparison on both crack types combined 
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(b) Comparison on load cracking 

 
(c) Comparison on B/T cracking 

FIGURE 5.3: Crack condition comparison on the one-mile segment between Dec. 6, 

2011 and Dec. 7, 2013 

4. Analysis at Detailed Level Using a Crack Fundamental Element 

Model  

Using crack types and the corresponding deduct values is one alternative to interpreting 

the crack condition on the roads.  Since the detected crack maps are generated at multiple 

timestamps, the changes of more fundamental crack properties can be investigated.  

Crack pattern, together with other crack characteristics, is crucial for differentiating crack 

types and severity levels in transportation agencies’ pavement survey practices. Tsai, et 

al. (2014) proposed a multi-scale CFE model to not only topologically represent crack 
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patterns, but also to provide rich crack properties at three different scales (fundamental 

crack properties, aggregated crack properties, and CFE-clustered geometrical properties) 

to support the crack condition analysis.  As introduced in Chapter 2, FIGURE 2.1 briefly 

illustrates the logic of multi-scale crack properties extraction. 

Using this logic, different crack properties, such as crack length, junctions, and polygons, 

etc., can be extracted from the detected crack maps, and the changes of these properties 

can be quantitatively evaluated between different timestamps.  A 200-ft. section near 

Milepoint 7.5 in the negative direction is selected (as highlighted in FIGURE 5.3), and 

the changes of different properties within this selected section are presented in the 

subsequent contents. 

5.1 Crack Length 

Crack length is one of the most basic properties used to describe a crack pattern. Many 

state DOTs use crack length to report the extents for different crack types. In this study, 

we measure the arc lengths of the detected crack curves within the selected sections.  

FIGURE 5.4 shows the change in total crack length, which is the sum of the lengths of all 

detected crack curves. It can be observed that the crack deterioration led to a 30% 

increase in crack length over the two-year period.  
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FIGURE 5.4: Change in total crack length across five different timestamps on the 

selected 200-ft. section near milepoint 7.5 

The analysis in crack length can also be linked with other crack properties, such as crack 
orientations.  FIGURE 5.5 shows the comparison between crack growth along the 
longitudinal direction (within 30 degrees of the driving direction) and other directions.  It 
shows that the crack growth along other directions is more significant than the one along 
the longitudinal direction, which indicates that long and continuous longitudinal cracks 
already existed in both wheelpaths, and the crack deterioration was more of a branching 
out from these cracks rather than a further extension of them.  This is also consistent with 
the more significant deterioration with B/T cracking (as shown in FIGURE 5.3).  

 

FIGURE 5.5: Crack deterioration comparison between longitudinal and other 

directions on the selected 200-ft. section near milepoint 7.5 



 

147 

 

The precise locations of these deterioration behaviors can be identified by comparing the 

detected crack maps.  FIGURE 5.6 and FIGURE 5.7 present two examples of crack 

growth along longitudinal and transverse directions correspondingly. 

Moreover, the analysis in different crack properties can be location-based.  Many state 

DOTs emphasize the crack condition survey inside wheel paths, as they are expected to 

deteriorate more rapidly than the outside areas.  FIGURE 5.8 shows the change of crack 

length inside and outside the wheel paths across five different timestamps. It can be 

observed that the majority of cracks lie inside the wheel paths, and crack deterioration 

mainly happens inside the wheel paths, as well.  

         
(a) Comparison between range images 

Oct. 2011 Dec. 2013 
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(b) Comparison between detected crack maps 

FIGURE 5.6: Example of crack deterioration along the longitudinal direction on the 

selected section near milepoint 7.5 

  

Oct. 2011 Dec. 2013 
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(a) Comparison between range images 

         
(b) Comparison between detected crack maps 

FIGURE 5.7: Example of crack deterioration along the transverse direction 
 

Oct. 2011 

Oct. 2011 Dec. 2013 

Dec. 2013 
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            (a) Illustration of wheelpath                               (b) Change of crack length  

FIGURE 5.8: Crack deterioration comparison inside and outside the wheelpaths 

across five different timestamps on the selected 200-ft. section near milepoint 7.5 

5.2 Crack Intersection 

Crack intersections locate the crossing points of the predominant crack curves. The 

number of crack intersections indicates the complexity of the crack pattern and the 

severity of the crack condition. Crack intersections are usually introduced by the 

branching out or connection of existing crack curves. As shown in FIGURE 5.9, the 

number of crack intersections has increased dramatically over the two-year period, which 

confirms that the branching out of existing cracks was the major crack deterioration 

behavior during that period of time.  FIGURE 5.10 presents an example in which crack 

branching out is clearly observed.  

5.3 Crack Polygon 

Many crack curves intersect with each other and form an enclosed piece-like area, which 

is referred to as a crack polygon. The number and extent of each crack polygon is an 

important property to differentiate crack types and severity levels. For example, the 

presence of an extensive number of small crack polygons is usually referred as “alligator 
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cracking,” which indicates high severity load-related cracking and potential structural 

failure. In the study, the number of crack polygons within the selected sections is counted 

across different timestamps (as shown in FIGURE 5.11). The crack polygons started to 

appear in the second half of the given period, but the number was still limited. A further 

investigation on the detected crack maps shows that these distributed polygons are 

isolated, so their existence doesn’t significantly impact the crack type and severity level 

within the selected sections.  FIGURE 5.12 shows an example of how the crack polygons 

are formed through crack deterioration.  

 
 

FIGURE 5.9: Change in number of crack intersections across five different 

timestamps on the selected 200-ft. section near milepoint 7.5 
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(a) Comparison between range images 

         
(b) Comparison between detected crack maps 

FIGURE 5.10: Example of crack branching out (crack intersections are marked as 

yellow dots) 

  

Oct. 2011 

Oct. 2011 Dec. 2013 

Dec. 2013 
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FIGURE 5.11: Change in number of crack polygons across five different 

timestamps on the selected 200-ft. section near milepoint 7.5 

6. Issues Related to Crack Deterioration Analysis Using Long-term 

Monitoring Data 

The existing issues and potential challenges, which are expected to benefit future 

research in this field, are identified based on the experience from this study and 

discussed below.  

First, a method for data registration between multiple timestamps needs to be developed. 

In this study, multiple timestamps are manually registered together based on the markers 

on the road. As shown in FIGURE 5.13, in the longitudinal direction, the data from 

different timestamps are aligned together using the pre-labeled markers on the edge of the 

road. This requires these markers to be painted to label the terminus of the survey section 

before data collection. It becomes difficult to conduct the study at a larger scale (e.g. in a 

state-wide survey). Therefore, using an automatic data registration method based on GPS 
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and existing pavement features, such as cracks and pavement markers, is recommended 

for future research. 
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(a) Comparison between range images 

         
(b) Comparison between detected crack maps 

FIGURE 5.12: Illustration of forming crack polygons 

Second, the data variability needs to be thoroughly evaluated. On one hand, the survey 

areas are not always consistent between multiple timestamps, and data completeness is 

not always guaranteed. Most pavement data acquisition systems are able to cover one 

lane width only if the vehicle is driven in the middle of the lane. As shown in FIGURE 

5.13, in the transverse direction, due to the inconsistent driving behaviors in different 

surveys, the coverage cannot be guaranteed to be the same. The survey in Mar. 2012 

Oct. 2011 

Oct. 2011 

Dec. 2013 

Dec. 2013 
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covered the entire lane width, while a small part near the left lane marking was missed in 

the survey in Dec. 2011. To ensure a fair comparison, the survey area needs to be shrunk 

in the transverse direction. The issue may become more significantly difficult for large-

scale research that covers significant amounts of time. Therefore, standardized data 

collection procedures need to be developed. On the other hand, the inherent data 

variability needs to be studied so that it is not confused with the external crack 

deterioration behaviors.  

Third, research is needed to understand diverse internal and external factors of crack 

deterioration behavior. The study presented in this section focuses on monitoring and 

quantifying the changes. The next stage utilizes these data in the pavement management 

applications, including forecasting deterioration behaviors and enhancing pavement 

design. It requires large-scale research and, also, depends on the data availability in many 

other aspects, such as traffic volume, environmental factors, design, construction, 

existing maintenance, etc. 
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FIGURE 5.13: Illustration of manual registration 

7. Summary 

Pavement cracks continuously deteriorate over time. This chapter presents a potential 

method of monitoring pavement crack deterioration behaviors from temporal domains 

using high-quality, 3D pavement surface data.  It also presents a detailed level 

representation of crack information (including length, width, orientation/direction, 

position/location, intensity, pattern, etc.), derived using 3D laser imaging technology, 

crack detection algorithms, and the multi-scale CFE model, could potentially be used to 

support 1) fundamental study of pavement mechanistic and pavement deterioration 

behavior, 2) validation of current pavement design methods and development of new 

design concepts and methods, 3) determination of adequate treatment methods and 

strategies based on pavement distress characteristics and their deterioration behavior, 4) 

development of accurate and reliable forecasting models, and 5) development of cost-

effective pavement management operations/practices, such as intelligent crack sealing 
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planning. Compared to frequently used lab simulation data or controlled experimental 

data (e.g. AASHO road test), the in-service pavement data used in this study represent 

truer crack deterioration mechanisms and enable the ability to explicitly connect 

pavement condition deterioration with the real-world factors that cause it. While it is not 

feasible to comprehensively cover the entire field of research, this study is a concrete first 

step and is believed to be transformative in changing the way researchers have 

approached sensing based infrastructure condition monitoring and risk assessment. 
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Chapter 6 Long-term Monitoring of Rutting Deterioration  

In this chapter, 3D rut shapes and their deterioration at multiple scales, including project, 

segment, and individual rut-levels, are analyzed using (1) descriptive statistics of spatial 

parameters and the proposed temporal parameters; and (2) 2D and 3D visualization and 

image subtraction.  In this study, a pavement project is defined as a section of pavement, 

typically a few miles long, which has a consistent pavement type, design, maintenance 

activity, etc.  A pavement segment is a road section that is typically 1 mile or less in 

length.  An individual rut refers to a road section that is smaller than 1 mile in length.  

For project and segment-level deterioration, boxplots are generated to show the 

distribution of rut parameters at different timestamps.  A boxplot is a practical tool that 

depicts the overall distribution of data (McGill et al. 1978).  As depicted in FIGURE 6.1, 

a boxplot consists of a box with three horizontal bars and the whiskers (vertical bars).  

The box represents the middle fifty percentiles of the data (its range is defined as the 

interquartile range: IQR), and the horizontal bars at the top, middle, and bottom of the 

box denote the third quartile, the median, and the first quartile, respectively.  The top 

whisker extends from the top of the box to the farthest data point that is within 1.5 times 

of the IQR from the top of the box (i.e., the upper extreme), and the bottom whisker 

extends from the bottom of the box in a similar manner.  Any data points beyond the 

extent of the whiskers are considered outliers.   

For individual rut level deterioration, 2D and 3D visualization, as well as image 

subtraction techniques that are similar to the ones shown in the previous chapter, are used 

to show the detailed 3D rut shapes.   
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FIGURE 6.1: Illustration of a boxplot 

1. Characterization of 3D Rut Shape and Its Deterioration 

In this study, rut parameters defined in the literature, as well as some new parameters, are 

used to characterize a 3D rut shape and to quantify the change in the 3D shape.  The 

following list shows the spatial and temporal rut parameters used in the analysis: 

 Profile-based parameters: 

o LRD: PP69 Left rut depth (mm) 

o RRD: PP69 Right rut depth (mm) 

o PP69 Left rut width (mm) 

o RRW: PP69 Right rut width (mm) 

o LCA: PP69 Left cross-sectional area (mm2) 

o RCA: PP69 Right cross-sectional area (mm2) 

o TPA: Total positive area (mm2) 

o TNA: Total negative area (mm2) 

o DR: Distortion ratio 
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o TD: Total distortion (mm2) 

o TAD: Total absolute distortion (mm2) 

o PD: PP69 Percent deformation (%) 

 Longitudinal parameters: 

o LRL: Left rut length (m) 

o RLR: Right Left rut length (m) 

o LRV: Left rut volume (m3) 

o RRV: Right rut volume (m3) 

 Temporal parameters: 

o TEA: Total elevated area per year (mm2/yr) 

o TDA: Total depressed area per year (mm2/yr) 

o MED: Mean elevated distance per year (mm/yr) 

o MDD: Mean depressed distance per year (mm/yr) 

Among these parameters, temporal parameters and TAD are first proposed in this 

research.  The proposed parameters are described below. 

1.1 Profile-based Parameters 

Total Absolute Distortion 

FIGURE 6.2 illustrates the positive and negative areas of a pavement profile, which 

could be sensitive to the location of the reference line.  Therefore, in this study, we 

propose the total absolute distortion (TAD) as an additional indicator to describe the level 

of distortion.  As defined in the following equation, TAD is the sum of absolute positive 

areas and absolute negative areas.  TAD accounts for the distortion on both sides of the 
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reference line by summation, which naturally makes it less sensitive to the original share 

of the pavement surface. 

| | | | 

 

 

FIGURE 6.2: Illustration of positive and negative areas 

Longitudinal Parameters 

Rut Length 

Rut length can be defined as the longitudinal extension of an individual rut measured in 

distance units, such as meter or foot.  Rut length has been used by transportation agencies 

as a means to identify the percentage or extent of rut within a section length.  Some other 

agencies use rut length as one of the indicators to define and monitor rutting.  For 

example, the Transfund New Zealand measures rut by the length of a wheel path where 

rut depth exceeds 30 mm (Transfund New Zealand, 1997).   

To calculate rut length, the minimum dimensions of a rut needs to be clearly defined.  

After taking current state DOT practices and AASHTO provisional standards into 

consideration, we define the minimum dimensions (i.e., depth, width, and length) of a rut 

to be 3 mm, 300 mm, and 30 m (1/8 in, 1 ft, and 10ft).  In addition, the minimum distance 

between two ruts needs to be at least 6 m (20 ft), as suggested by Li (2012).  If the 
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longitudinal length of the non-rutting area between two ruts is less than 6 m, the two ruts 

are considered as one, and the total length of this rut is the sum of the lengths of both ruts 

and the non-rutting area.  Any pavement sections failing to meet these requirements, even 

with measured rutting, are considered localized deformation with a rut length of zero.  

Rut lengths in the left wheel path (denoted as LRL) are calculated separately from those 

in the right wheel path (denoted as RRL). 

Rut Volume 

Rut volume has been explored previously in the literature (Li 2012); however, it has not 

yet gained much attention among transportation agencies.  Similar to the way rut length is 

calculated, rut volume is only calculated for ruts that meet the minimum dimensional and 

spacing requirements stated previously.  Rut volume can be defined as the integral of rut 

areas along the length of the rut, as shown in the equation below.  Rut volume in the left 

wheelpath (denoted as LRV) and the right wheelpath (denoted as RRV) are calculated 

separately. 

	 , ∀	 ∈ 	 

where 

 	 = rut volume of the th rut; 

  = longitudinal distance interval between two consecutive measurements; 

  = the th cross-sectional area; and 
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  = total number of measurements within the boundaries of rut	 . 

1.2 Temporal Parameters 

To understand how rut deteriorates, one can compare the rut parameters of the same 

segment at different timestamps through statistical means (e.g., mean, median, 

percentiles, boxplot, etc.). With the spatiotemporally registered data, rut deterioration can 

be further quantified through direct comparison of the 3D rut shapes between different 

timestamps.  In this study, the temporal parameters discussed below are proposed to 

measure the actual rate of change in 3D rut shapes (transverse profiles) as a more direct 

means to quantify rut deterioration. 

Total Elevated and Depressed Areas Per Year 

As depicted in FIGURE 6.3, the total elevated area per year (TEA) is the elevating rate of 

the total elevated area per year.  Elevated areas are defined as the areas enclosed by two 

profiles where the elevation of the second timestamp profile (red profile) exceeds the 

elevation of the first timestamp profile (blue profile).  Total depressed area per year 

(TDA), on the other hand, is the depressing rate of the sum of the depressed areas, where 

the elevation of the second timestamp profile is lower than the elevation of the first 

timestamp profile.  Equations below define the total elevated and depressed area 

mathematically. 
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FIGURE 6.3: Illustration of temporal parameters 

	
365

	 , ∀ ∈ 		 

	
365

	 , ∀ ∈  

, 1, … , 		 

where 

 	 = number of days between Timestamps 1 & 2; 

  = the th point with positive elevation change; 

  = the th point with negative elevation change; 

  = the signed elevation change of the th point from profile  to profile 

; 

  = profile elevations at Timestamp 1; 

  = profile elevations at Timestamp 2; 
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  = total number of elevated points; 

  = total number of depressed points; and 

  = total number of points per profile, . 

Mean Elevated and Depressed Distances Per Year 

In addition to the change in cross-sectional profile areas, change in elevation can also be 

calculated.  In this study, the mean elevated distance per year (MED) is defined as the 

annual rate of in the average positive elevation from the first timestamp to the second 

timestamp.  As defined in the equations below, the mean elevated distance is the rate at 

which the average elevation changes among all points that have a positive elevation 

change.  Mean depressed distance per year, or MDD, can be calculated in the same 

manner. 

 

 

2. Project-Level Rut Deterioration 

For project-level analysis, long-term 3D pavement data collected on Georgia State Route 

26 between Mileposts 5.5 and 11.5 were used.  This road section consists of two 6-mile 

projects, one in the eastbound direction and the other in the westbound direction.  Long-

term 3D pavement data were collected at 7 timestamps between March 2012 and 

February 2016. 
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2.1 Deterioration of Profile-based Parameters 

FIGURE 6.4 shows the boxplots of all profile-based rut parameters of SR 26 eastbound 

Mileposts 5.5 to 11.5 at multiple timestamps.  From this figure, it is noticed that rutting 

within this project slowly became more severe.  This result echoes GDOT's annual 

survey results in which the pavement condition evaluation system (PACES) rating of this 

project gradually decreased over the analysis period.  FIGURE 6.5 shows the boxplots of 

all profile-based rut parameters of SR 26 westbound, Mileposts 5.5 to 11.5, at multiple 

timestamps. 
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FIGURE 6.4: Deterioration of profile-based parameters at project-level: SR 26 

Eastbound MP 5.5-11.5 
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FIGURE 6.5: Deterioration of profile-based parameters at project-level: SR 26 

Westbound MP 11.5-5.5 
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Most profile-based parameters did not change dramatically over the course of these 7 

timestamps.  Several profile-based parameters, including rut depth, rut cross-sectional 

area, percent deformation, and total absolute distortion, showed similar trends that 

increased gradually.  Interestingly, while these parameters showed positive trends at 

Timestamps 1, 2, 3, 5, and 6, their trends slowed down or became negative at timestamps 

4 and 7.  A possible explanation of this observation can be the seasonal variability, i.e., 

rut deterioration slows or stops in low- temperature seasons, as depicted in FIGURE 6.6 

(White et al. 2002).  Note that Timestamps 4 and 7 were in December and February, 

respectively, and Timestamps 1, 2, 3, 5, and 6 were in summer and spring. 

 

FIGURE 6.6: Potential seasonal effects on rutting (White et al. 2002) 

Other profile-based parameters, such as total positive area, total negative area, distortion 

ratio, and total distortion, nevertheless, did not have a clear, common trend.  Overall, the 

value of the total negative area was larger than that of the positive area, indicating that 

the majority of this project had larger depression than elevation.  Consequently, the total 

distortion, which is defined as the total positive area minus the total negative area, tends 

to be negative throughout the analysis period. 
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Similar findings are also observed in the other 6-mile project in the Westbound direction 

on SR 26, which is reasonable because the two projects share very similar, if not the 

same, pavement design, traffic volume, characteristics, and climates.  Overall, the 

Eastbound direction had more severe rutting than the Westbound direction.  Results of 

the Westbound project are shown in FIGURE 6.5.  

2.2 Deterioration of Longitudinal Parameters 

Deterioration of project-level longitudinal parameters, including the total length and 

volume of ruts, are summarized in this section.  As depicted in FIGURE 6.7, a high 

correlation between rut length and rut volume can be observed.  This phenomenon is 

expected, since both rut length and rut volume are only calculated at locations where 

there is rutting.  In addition, these two parameters generally follow similar trends as the 

ones observed in a few profile-based parameters, including rut depth, rut cross-sectional 

area, percent deformation, and total absolute distortion.  This result indicates that the 

deterioration of rut shape is multi-dimensional, i.e., rut deteriorates in depth, length, 

cross-sectional area, and volume.  Seasonal variation seems to have an effect on the 

changes observed in longitudinal parameters, too.  While positive trends in length and 

volume can be observed during spring and summer seasons, growth in rut length and 

volume became moderate and sometimes negative in winter.  Further confirmation of this 

observed behavior can be performed in the field to verify the effect of seasonal variation 

on rut shapes. 
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(a) Rut Length (SR26 Eastbound)  (b) Rut Volume (SR26 Eastbound) 

 

(c) Rut Length (SR26 Westbound)  (d) Rut Volume (SR26 Westbound) 

FIGURE 6.7: Deterioration of longitudinal parameters at project-level 
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2.3 Deterioration of Temporal Parameters 

FIGURE 6.8 and FIGURE 6.9 show the deterioration of ruts in temporal rut parameters, 

including the mean elevated and depressed distances, and the total elevated and depressed 

areas.  As defined in the previous section, temporal parameters at each timestamp were 

obtained by calculating their rates of change per year. 

 

FIGURE 6.8: Deterioration of temporal parameters at project-level: SR 26 

Eastbound 

These two figures show that the two projects shared similar trends in all four parameters.  

It is noticeable that while the deterioration rates were temperate (e.g., < 1.5 mm/yr) at 

most timestamps, the depressed rates in depth and in area were higher at Timestamps 2 
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and 5.  This finding can be associated with the seasonal variation as discussed above.  As 

depicted in Figure in FIGURE 6.6, the deterioration of rut depth tends to be more rapid in 

late spring and summer, including April, May, June, July, and August, and it slows down 

during the late fall and winter season (i.e., October to February).   

 

FIGURE 6.9: Deterioration of Temporal Parameters at Project-level: SR26 

Westbound 

By comparing these two timestamps with their respective previous timestamps, it is noted 

that the season transitioned from winter or early spring to summer.  Given the fact that a 

rut deteriorates more rapidly in spring and summer, these two timestamps are, therefore, 

expected to have higher deterioration rates.   
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Interestingly, although Timestamp 6 occurred in the summer, deterioration rates at this 

timestamp were not as pronounced as those at Timestamps 2 and 5.  This is because 

deterioration rates at both Timestamps 2 and 5 were calculated over shorter periods (i.e., 

4 months and 7 months) in spring and summer, whereas the rates at Timestamp 6 were 

calculated over an 11-month period that spanned all seasons.  Since the deterioration rate 

is typically higher in summer, when propagating a rate that is observed over a few 

summer months to an annual rate, the projected annual rate is expected to be higher.  On 

the contrary, if the period between two timestamps is   longer (e.g., close to a year or 

more than a year), the deterioration rate is more likely to be “balanced out” over the 

course of the period.  As a result, deterioration rates at Timestamp 6 were not as 

noticeable as those at Timestamps 2 and 5. 

3. Segment-Level Rut Deterioration 

Rut deterioration in the two projects shown in the previous section, together with two 

other segments (one on SR 275 and the other on I-95), are further analyzed on a one-mile 

segment basis.  Similar to the project-level analysis, deterioration of rutting in these 14 

segments were analyzed using descriptive statistics of various spatial and temporal rut 

parameters, and the results are summarized below. 

3.1 Deterioration of Wheelpath-Specific, Profile-based Parameters 

FIGURE 6.10 and FIGURE 6.11 show the deterioration of wheelpath-specific rut 

parameters, including rut depth, rut width, and rut cross-sectional area.  By comparing the 

deterioration of these rut parameters, several findings that are consistent with the results 
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of project-level analysis can be summarized. First, seasonal variation seems to have effect 

on all segments, as rut parameters tend to grow more slowly or negatively at Timestamps 

4 and 7 and faster at the other timestamps.  Second, it is evident that rut depth and rut 

cross-sectional area share similar trends, indicating these two parameters have higher 

correlation.  Rut width, on the other hand, shows large variation between 0 mm and 2,000 

mm (which are essentially the possible minimum and maximum width) and does not 

show clear correlation with other parameters. 

 

FIGURE 6.10: Deterioration of Wheelpath-specific Profile-based Parameters at 
Segment-level: SR 275 Northbound MP 0-1 

 

FIGURE 6.11: Deterioration of wheelpath-specific profile-based parameters at 

segment-level: I-95 Southbound MP 101-100 
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By comparing consecutive segments on SR26's two projects, as depicted in FIGURE 6.12 

and FIGURE 6.13, it is noted that rut conditions vary noticeably among these segments.  

An overall observation is that segments in the eastbound direction of SR 26 had more 

severe ruts than those on the westbound direction.  Segments between Mileposts 10.5 to 

11.5 in both directions showed extremely severe rutting with the rut depth larger than 1 

in.  A possible explanation of the severe rutting in these two segments is that it has a lot 

of truck traffic traveling from and to the Savannah Port.  There is an intersection at 

around Milepost 11.5 that is also at the beginning and ending of a transition slope to a 

bridge.  As a result, excessive stop-and-go heavy truck traffic may be the cause of severe 

rutting in these two segments. 

Furthermore, when comparing the deterioration of rut parameters in segments from 

different routes, it is observed that the general trend of rut deterioration was slower on SR 

275 and I-95 than on several segments of SR 26.  This finding indicates that rut 

deterioration can potentially be affected by traffic characteristics and different pavement 

design. 
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FIGURE 6.12: Deterioration of wheelpath-specific profile-based parameters at 

segment-level: SR 26 Eastbound MP 5.5-11.5 
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FIGURE 6.13: Deterioration of wheelpath-specific profile-based parameters at 

segment-level: SR 26 Westbound MP 11.5-5.5 
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3.2 Deterioration of Other Profile-based Parameters 

Deterioration of other profile-based rut parameters, including total positive and negative 

areas, total distortion, total absolute distortion, distortion ratio, and percent deformation, 

are further analyzed in this section.  Results of the deterioration of these parameters are 

shown in FIGURE 6.14 to FIGURE 6.15.  In FIGURE 6.14, it is observed that the 

deterioration of other profile-based parameters was not noticeable in the SR 275 segment 

throughout the 7 timestamps.  In FIGURE 6.15, on the other hand, a gradual deterioration 

can be observed in parameters such as TAD and PD.   

 

FIGURE 6.14: Deterioration of other profile-based parameters at segment-level: SR 

275 MP 0-1 
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FIGURE 6.15: Deterioration of other profile-based parameters at segment-level: I-

95 MP 101-100 

It is noted that the rut parameters derived based on the positive and negative areas, 

including TPA, TNA, TD, and DR, show larger variations in their trends over the 7 

timestamps in most of the segments, unlike the trends of TAD and PD, which are more 

consistent and similar to the trends of rut depth and cross-sectional area.  Since the 

positive and negative areas are defined by calculating the areas defined by the transverse 

profile and an imaginary reference line that connects two edges of the lane, variation can 

be introduced into these parameters when the geometric relationship between the profile 

and the reference line slightly changes.  Parameters such as TD and DR, therefore, cannot 

directly reveal true physical shape and conditions of the rut; instead, they represent the 

relative relationship between TPA and TNA.   
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FIGURE 6.16: Deterioration of profile-area-based parameters at segment-level: SR 

26 Eastbound MP 5.5-11.5 
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FIGURE 6.17: Deterioration of profile-area-based parameters at segment-level: SR 

26 Westbound MP 11.5-5.5 
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FIGURE 6.18: Deterioration of other profile-based parameters at segment-level: SR 

26 Eastbound MP 5.5-11.5 

 
FIGURE 6.19: Deterioration of other profile-based parameters at segment-level: SR 

26 Westbound MP 11.5-5.5 
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3.3 Deterioration of Longitudinal Parameters 

FIGURE 6.20 and FIGURE 6.21 show the deterioration of longitudinal parameters at the 

segment level.  In these figures, each bar represents the length (volume) of rutting in a 

segment at a given timestamp.  By comparing the length and volume values of the same 

segment across multiple timestamps, a positive trend is generally observed.  This 

indicates that most of the segments deteriorate in length and volume.  When comparing 

the parameters between left and right wheelpaths, it is noted that the left wheelpath, 

overall, had more severe rutting.  A similar relationship between wheelpaths can also be 

found in other wheelpath-specific parameters, such as rut depth and cross-sectional area.  

This finding, however, is inconsistent with the general expectation that rutting in the right 

wheelpath is typically more severe than in the left wheelpath, since traffic load is usually 

higher on the right wheelpath under the effect of cross slope.   

3.4 Deterioration of Temporal Parameters 

FIGURE 6.22 to FIGURE 6.25 show the deterioration of temporal rut parameters.  The 

effect of seasonal variation, as discussed in previous sections, is also evident in the trends 

of temporal parameters at the segment level.  Note that when compared to other 

segments, SR 275 has, overall, smaller temporal parameter values (in FIGURE 6.22), 

indicating that rutting in this segment deteriorated more slowly than the other segments.  

I-95 and SR 26 segments, on the other hand, showed fairly similar trends and patterns.  It 

is noted that all segments on SR 26 had very similar temporal parameter values at the 

same timestamp; this result indicates that although segments in the same project may 

have different severity levels of rutting, they tend to deteriorate at the same rate (as in this 

case).  One possible explanation of this finding is that since all segments of these two 
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pavement projects shared very similar pavement design, age, and traffic characteristics, 

they deteriorated in a  similar manner. 

 
(a) Left Rut Length 

 
(b) Right Rut Length 

FIGURE 6.20: Deterioration of rut length at segment-level 
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(a) Left Rut Volume 

 
(b) Right Rut Volume 

FIGURE 6.21: Deterioration of rut volume at segment-level 
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FIGURE 6.22: Deterioration of temporal parameters at segment-level: SR 275  

 
FIGURE 6.23: Deterioration of temporal parameters at segment-level: I-95 
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FIGURE 6.24: Deterioration of temporal parameters at segment-level: SR 26 

Eastbound MP 5.5-11.5 
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FIGURE 6.25: Deterioration of temporal parameters at segment-level: SR 26 

Westbound MP 11.5-5.5 
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4. Individual-Rut-Level Rut Deterioration 

The above sections demonstrate how 3D sensing technology and the proposed data 

registration method can be used as statistical means that advances the understanding of 

rut deterioration at larger scales.  In fact, the strength of the proposed method prevails 

when used to study the detailed deterioration of rutting at a finer level.  In this section, a 

few examples are selected to demonstrate how the proposed method can be used to 

quantify rut deterioration at the individual rut-level.  Acknowledging the possible effect 

of seasonal variation on the shape of rutting, only summer timestamps (i.e., 7/13/2012, 

7/18/2014, and 6/15/2015) were selected for the individual rut-level analysis in this 

section. 

4.1 Rut Deterioration of a Selected Section on SR 26 

FIGURE 6.26 and FIGURE 6.27 illustrate the 3D rut shapes of a 25-meter pavement 

section on SR 26 and the exact change in shape between different timestamps.  By 

comparing the 3D shapes of these timestamps, it is clear that ruts in both wheelpaths 

deteriorated faster when close to the beginning section (bottom left of each figure).  This 

finding was also observed in the field at the beginning section, which was at an 

intersection where heavy truck traffic frequently decelerates and accelerates.  From the 

3D shape change, as depicted in FIGURE 6.26 (d) and FIGURE 6.26 (e), it is clear that 

the change was more severe between the first two timestamps.  This is reasonable 

because the first two timestamps were two years apart, whereas the last two timestamps 

were only one year apart.  From the 2D deterioration maps in FIGURE 6.27 (d) and 

FIGURE 6.27 (e), it is evident that the deterioration in this section can be associated with 

heavy truck traffic because of the dual-wheel shapes observed in both wheelpaths.  The 
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exact elevation and cross-sectional area changes can be further calculated and represented 

using the temporal parameters proposed in this study. 

 
(a) 7/13/2012 

 

(d) 7/13/2012 to 7/18/2014 

 
(b) 7/18/2014 

 
(e) 7/18/2014 to 6/15/2015 

 
(c) 6/15/2015 

FIGURE 6.26: 3D visualization of rut deterioration on SR26 Westbound 
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(a) 7/13/2012 

 
(b) 7/18/2014 

 
(c) 6/15/2015 

 
(d) 7/13/2012 to 7/18/2014 

 
(e) 7/18/2014 to 6/15/2015 

FIGURE 6.27: 2D visualization of rut deterioration on SR26 Westbound 
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4.2 Rut Deterioration of a Selected Section on SR 275 

A 45-meter section on SR 275 Northbound was selected to demonstrate how the 

proposed method can be used to visualize and quantify the deterioration of rutting.  As 

shown in FIGURE 6.28 and FIGURE 6.29, rutting in both wheelpaths grew not only in 

depth, but also in length and volume.  While the deterioration was not as obvious as the 

previous example on SR 26, the change in the longitudinal shape was appreciable.  This 

finding further affirms the importance of the use of longitudinal parameters for rut 

characterization and deterioration analysis. 

4.3 Discussion 

The two examples shown in this section demonstrate how the proposed boundary-based 

data registration method can effectively register multi-timestamp 3D pavement data for 

rut characterization and deterioration analysis at large scales, such as project and 

segment-levels; it can also support deterioration analysis at the individual rut-level.   

The examples above also demonstrate two types of data visualization for long-term 3D 

pavement data. Each of these two types of visualization has its advantages and 

disadvantages.  For example, the 3D models can help engineers evaluate the pavement at 

a scale and detailed level that cannot be achieved even in the field.  Many 3D modeling 

software programs can provide interactive functions that allow engineers to examine the 

pavement section at any desired scale and angle.  These 3D graphics, however, are 

limited by the viewing angle if plotted on a 2D surface (i.e., paper).   The 2D 

visualization, on the other hand, can effectively provide a holistic view of how the section 

deteriorates, using color, even though it does not visually show the 3D shape. 
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(a) 7/13/2012 

 
(d) 7/13/2012 to 7/18/2014 

 
(b) 7/18/2014 

 
(e) 7/18/2014 to 6/15/2015 

 
(c) 6/15/2015 

FIGURE 6.28: 3D Visualization of Rut Deterioration on SR 275 Northbound 
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(a) 7/13/2012 

 

(b) 7/18/2014 

 

(c) 6/15/2015 

 

(d) 7/13/2012 to 7/18/2014 

 

(e) 7/18/2014 to 6/15/2015 

FIGURE 6.29: 2D Visualization of rut deterioration on SR275 Northbound 
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5. Preliminary Assessment of Rut Parameters 

A fair number of rut parameters have been defined in the literature to characterize the 

shape of 3D rutting.  While some parameters can provide a fair representation of the 

severity of rutting, they may not be sufficient to describe the deterioration behavior of 

ruts.  In this section, some preliminary assessment of rut parameters used in this study, in 

terms of their correlation and some observed issues, are summarized. 

5.1 Correlation among Rut Parameters 

Correlation among rut parameters has been studied in the literature for identifying the 

potential variation of different data collection techniques.  For example, Simpson 

examined the correlation between rut depths derived using different methods (e.g., 

straightedge and stringline).  Simpson (1999) also explored the correlation among other 

parameters, such as rut width, positive area, negative area, and fill area.  Qiu (2013) also 

conducted correlation analysis to examine rut depth measurements calculated using the 

AASHTO PP69 provisional standard and the straightedge method.   

In this section, the correlation among rut parameters used in this study is examined.  

FIGURE 6.30 to FIGURE 6.33 show the correlation matrices among rut parameters on 

the available routes.  From these matrices, several findings in the multi-scale 

deterioration analysis can be confirmed.  For example, it is noted that several rut 

parameters, including PD, LRD, RRD, LCA, RCA, and TAD, show high correlations.  

This indicates that these parameters generally reflect the severity of rutting; the higher 

these parameters are, the more severe the rutting is.  Longitudinal parameters also show 

high correlations with the aforementioned parameters, especially on SR 26, indicating 



 

200 

 

that ruts grow not only in depth and area but also in length and volume.  Temporal 

parameters share high correlation among themselves; however, they do not correlate well 

with other spatial parameters.  This implies that temporal parameters represent certain rut 

features (e.g., deterioration) that other spatial parameters cannot.  The correlation matrix 

of SR 275 rut parameters shows less correlation among them, which can be caused by the 

lack of diversity in rut conditions in this dataset. 

 
FIGURE 6.30:  Correlation matrix of rut parameters on SR 26 Eastbound 
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FIGURE 6.31: Correlation matrix of rut parameters on SR 26 Westbound 
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FIGURE 6.32: Correlation matrix of rut parameters on SR 275 Northbound 
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FIGURE 6.33:  Correlation matrix of rut parameters on I-95 Southbound 
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5.2 Observed and Potential Issues of Parameters 

Partial Lane Profile-based Parameters 

Partial profile-based parameters in this study refer to rut parameters that are derived from 

part of the transverse lane profile.  For example, for calculating right wheelpath rut 

parameters, as depicted in FIGURE 6.34, AASHTO PP69 rotates the transverse profile so 

that the elevations at the right edge (Spot 5) and the lane center (Spot 1) are zero.  Rut 

parameters, such as right rut depth, width, and cross-sectional area, can be calculated 

using just the right half of the profile.  Moreover, some studies and software for two 

sensor systems (e.g., LCMS) use profiles collected from the two sensors separately to 

calculate left and right rut parameters (Li 2012).  For instance, profiles collected by the 

right sensor of the GTSV were used to calculate right rut depths in the study conducted 

by Li (Li 2012). 

 

FIGURE 6.34:  Deriving PP69 right rut parameters 

A potential issue with calculating rut parameters using partial lane profiles is that these 

partial profiles may not reveal the entire shape if the rut is not entirely in the wheel path.  

For instance, FIGURE 6.35 shows an isolated rut on 11th Street in Atlanta.  This rut is 

wide, and its basin exceeds the typical width of the wheelpath (e.g., 1,000 mm).  A 

stitched transverse profile of this rut is shown in FIGURE 6.36.  The straightedge rut 
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depth measured at this location was approximately 38.1 mm (1.5 in).  However, if rut 

depth is calculated using the right half of the rotated profile (FIGURE 6.37), the 

calculated rut depth becomes 32.4 mm.  Calculation of other right wheelpath rut 

parameters, such as rut width and cross-sectional area, would also result in 

underestimation.  Moreover, similar results are expected if only the half profile collected 

by the right laser unit was used to calculate rut parameters. 

 

FIGURE 6.35: An Example of Wide Rutting on 11th Street in Atlanta 

 
FIGURE 6.36:  Transverse Profile of a Wide Rut in Right Wheelpath 
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FIGURE 6.37: Rotated transverse profile for calculating right rut parameters 

Another potential issue with calculating rut parameters using partial lane profiles is that 

the same measurement may be the outcome of different rut shapes.  As depicted in 

FIGURE 6.38, the two profiles show two distinct shapes of rutting; however, their left rut 

parameters (e.g., depth, width, and cross-sectional area) may be the same based on PP69 

definition. 

 

 

(a) 

 

(b) 

FIGURE 6.38: Illustration of different rut shapes with same left rut depth 
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A possible solution for the above issues with regard to partial lane profile-based 

parameters is that, instead of rotating the transverse profile, the normalized lane profile 

can be used to derive wheelpath-based parameters.  The following discussion describes 

the solution in more details. 

As depicted in FIGURE 6.39, the 5 zones defined in PP69 are adapted to determine the 

lowest point (valley) in each wheelpath zone and the highest point (peak) in each of the 

other three zones.  Since left rut parameters and right rut parameters can be calculated in 

the same manner, the following figures describe how left profile-based parameters are 

defined and calculated. 

 

(a) Lower Center Elevation 

 

(b) Higher Center Elevation 

FIGURE 6.39:  Proposed of wheelpath-specific rut parameters 

 



 

208 

 

 

 

Reference Surface Plane Assumptions 

Positive and negative areas defined in the literature were determined by connecting both 

edges of the lane with an imaginary straight line, as depicted in FIGURE 6.40.  However, 

this reference line does not represent the actual horizon plane or the original pavement 

surface.  Consequently, the derived positive and negative areas and the total distortion 

and the distortion ratio cannot represent the severity of rutting well, and direct 

comparison of these parameters may not be meaningful. 

 

 

FIGURE 6.40: Illustration of positive and negative areas 

6. Summary 

In this chapter, 3D rut shape and its deterioration behaviors were characterized and 

analyzed at multiple scales using long-term 3D pavement data.  Rut parameters, including 

transverse profile-based parameters, longitudinal parameters, and temporal parameters, 

were defined and proposed.  Descriptive statistics and 2D and 3D visualizations were 

used to analyze the deterioration behaviors of rutting.  Some key findings of this chapter 

are summarized as follows: 
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 Transverse profile-based rut parameters, including rut depth, rut cross-sectional 

area, percent deformation, and total absolute distortion show good correlation 

among each other and provide consistent information about the conditions of ruts. 

 Longitudinal parameters also showed similar trends as the aforementioned 

parameters, indicating that ruts not only grow in depth and area but longitudinally 

in length and volume. 

 Temporal parameters provide a direct means to quantify the deterioration of 

rutting.  These parameters can be very useful, especially when the rate of 

deterioration is high. 

 The multi-scale analysis results show that seasonal variation can have an 

appreciable effect on the deterioration of ruts.  Temporal parameters derived from 

a shorter period (e.g., a few months), can be affected by the seasonal variation.  

This finding suggests that for different deterioration analysis applications, 

different analysis periods should be applied to obtain consistent results. 

 The comparison among three different routes showed that traffic and roadway 

characteristics also play an important role in the deterioration of ruts.  Other 

factors, such as the age and design of the pavement, can also contribute to the 

actual deterioration behavior of ruts. 

 2D and 3D visualization of ruts at the individual level shows the importance and 

benefits of having registered long-term 3D pavement data.  Details of how ruts 

deteriorate, e.g., the development of dual-wheel shape ruts and the growth in rut 

length and volume, were able to be identified in the selected sections.  This 
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information can further support the diagnosis of rutting and inform data-drive 

maintenance decisions.   

 Some parameters, such as PP69’s partial lane profile-based parameters, total 

positive area, total negative area, distortion ratio, and total distortion, can possibly 

introduce larger variation because they are calculated using a reference that tends 

to be variable.  Future research can be conducted to further analyze the possible 

effect of these parameters. 
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Chapter 7  Implementation of Research Outcomes 

We give thanks to USDOT/OST-R and GDOT’s sponsorship of RS-GAMS Phase 1 and 

Phase 2.  These two research projects focused on the fundamental validation of CRS&SI 

technologies, including 3D line laser and mobile LiDAR, to enhance pavement, traffic 

sign, pavement marking, and roadway geometry data inventory, condition assessment, 

and management.  The benefit of these two research projects is profound because the 

research results have been implemented in numerous completed and/or ongoing projects 

for GDOT.  As part of our effort to quantify the benefits from this research project, as 

well as those from Phase 1 (Tsai & Wang, 2016a), this chapter presents other completed 

and ongoing projects that are based on the research outcomes from this and the Phase 1 

project.  In addition, some future projects are also proposed. 

1. Research Focuses 

As shown in FIGURE 1.1, RS-GAMS Phase 1 and Phase 2 covered a broad area of 

transportation assets, including traffic sign, asphalt pavement, concrete pavement, 

pavement marking, cross slopes, horizontal curvature, and pavement width.  Table 7.1 

lists the research focuses in each project.  For convenience of reference, each research 

focus was assigned a research focus number.   

RS-GAMS focused on the validation of using sensing data collected by the GTSV to 

scientifically enhance various transportation asset data inventory and condition 

assessment.  The research approaches include 1) laboratory tests in a well-controlled 

environment; 2) field tests on carefully selected test road sections; 3) acquisition of data 

from other transportation agencies; 4) development of algorithms and applications; 5) 
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statistical analysis; and 6) extensive discussion with TAC members and other 

participating transportation agencies.  The validated results can be implemented in 

transportation agencies’ practice, and/or applied in other relative research projects. 

Table 7.1: Research Focuses in RS-GAMS Phase 1 and Phase 2 

Research 
Project 

Research 
Focus ID 

Research Focus 

RS-GAMS 
Phase 1 

RF(1,2)-1 
Development of Georgia Tech Sensing Vehicle (GTSV) and streamline 
data collection procedures 

RF(1)-1 Network-level and isolated rutting measurement using 3D laser data 

RF(1)-2 
Quantitative performance measure of automatic pavement crack 
detection 

RF(1)-3 Automatic asphalt pavement crack detection using 3D laser data  
RF(1)-4 An enhanced sign inventory procedure 
RF(1)-5 Sign retroreflectivity condition assessment using mobile LiDAR 
RF(1)-6 Prototype GIS-based sign management 

RF(1,2)-2 Long-term monitoring of pavement conditions 

RS-GAMS 
Phase 2 

RF(1,2)-1 Improvement of GTSV 
RF(2)-1 Automatic asphalt pavement crack classification 
RF(2)-2 Concrete pavement distress detection using 3D laser data 

RF(2)-3 
Pavement marking retroreflectivity condition assessment using mobile 
LiDAR 

RF(2)-4 
Extraction of roadway geometric characteristics (cross slopes, 
horizontal curvature, and pavement width) 

RF(2)-5 
Prototype GIS-based asset management for concrete pavement and 
curvature 

RF(1,2)-2 Long-term monitoring of pavement conditions 

2. Implementation and Applications 

The Georgia Tech research team has actively worked with GDOT’s Office of Research 

and other offices to further implement the research outcomes through numerous GDOT 

sponsored research projects.  Thus, the fundamental research conducted in RS-GAMS 

can be actually implemented in GDOT’s practices to enhance GDOT’s transportation 

asset, e.g. pavements, signs, roadway safety, data inventory, and condition assessment.  

Table 7.2 lists some completed, ongoing, and proposed projects that have implemented 

and/or applied the research outcomes as shown in Table 7.1.  The following will briefly 

present how the RS-GAMS research outcomes are implemented and/or applied in other 
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research projects.  Please note that the project RP 13-18 is an extension to RS-GAMS 

because, in this project, raveling detection algorithms were developed and validated.  

Nevertheless, the GTSV, data collection, and data preprocessing procedures developed in 

RS-GAMS were applied in RP 13-18.  In addition, the result outcomes from RP 13-18 

were successfully implemented in conducting pavement condition evaluation for 

Georgia’s interstate highways (RP 15-11).   

Table 7.2: Completed, Ongoing, and Proposed Projects 

RP # Title Status 
Applied Research 

Focuses 

13-18 
Development of an Asphalt Pavement Raveling Detection 
Algorithm Using Emerging 3D Laser Technology and 
Macrotexture Analysis 

Completed RF(1,2)-1 

13-19 
Enhancing GDOT’s Jointed Plain Concrete Pavement  
(JPCP) Rehabilitation Program Using Emerging 3D Sensing 
Technology and Historical Concrete Condition Survey Data 

Completed RF(1,2)-1, RF(2)-2 

14-37 
Next Generation Crack Sealing Planning Tool for Pavement 
Preservation 

Completed RF(1)-3, RF(2)-1 

15-11 
Implementation of Automatic Sign Inventory and Pavement 
Condition Evaluation on Georgia’s Interstate Highways 

Completed 
RF(1,2)-1, RF(1)-1, 

RF(1)-3, RF(1)-4, RF(2)-
1, RP 13-18  

15-04 
Developing Georgia’s High Friction Surface Treatment 
(HFST) Program - HFST Site Characteristics (HFST-SC) 
Data Collection and Analysis 

Ongoing RF(1,2)-1, RF(2)-4 

15-05 
Curve Identification for High Friction Surface Treatment 
(HFST) Installation Recommendation 

Ongoing RF(1,2)-1, RF(2)-4 

N/A Validating Change of Sign and Pavement Conditions and 
Evaluating Sign Retroreflectivity Condition Assessment on 
Georgia’s Interstate Highways using 3D Sensing Technology 

Proposed RF(1,2)-1, RF(1)-1, 
RF(1)-3, RF(1)-4, RF(1)-

5, RF(2)-1, RP 13-18 
 

 RP 13-18: Development of an Asphalt Pavement Raveling Detection Algorithm 

Using Emerging 3D Laser Technology and Macrotexture Analysis (Tsai & 

Wang, 2015)  

Raveling has become the most predominant and concerning distress on Georgia’s 

interstate highways with open graded friction course (OGFC), which is a progressive 

disintegration of a pavement surface.  Raveling shortens pavement life and results in 
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various safety concerns, such as flying stones that damage windshields and vehicle 

bodies, and rough and uneven pavement surface that increase road/tire noise and 

degrade riding safety.  It is critical to detect raveling at its early stage in order to 

apply inexpensive preventive maintenance methods, such as fog sealing.  However, 

the current visual method makes it difficult for an accurate raveling survey because 

the change of lighting conditions and vehicle speed significantly affects a survey’s 

perception of the pavement surface texture.  Thus, there is an urgent need for an 

accurate and objective raveling survey.  This research project, sponsored by the 

National Cooperative Highway Research Program (NCHRP) Innovations Deserving 

Exploratory Analysis (IDEA) program and GDOT, comprehensively tested and 

validated the automatic raveling detection, classification, and measurement 

algorithms using 3D laser technology.  The GTSV, data collection, and data 

preprocessing procedures developed in RS-GAMS were applied in this research 

project.  The raveling condition survey protocol used in GDOT was adopted in the 

testing and validation, though it can be easily extended to other highway agencies’ 

protocols.  Though this research project is not a direct implementation of RS-GAMS, 

its research outcomes have been successfully implemented in RP 15-11 (see Table 

7.2). 

 RP 13-19: Enhancing GDOT’s Jointed Plain Concrete Pavement (JPCP) 

Rehabilitation Program Using Emerging 3D Sensing Technology and Historical 

Concrete Condition Survey Data (Tsai, 2016)  

The JPCPs have carried more than 20% of Georgia’s truck traffic.  A majority of 

these JPCPs (e.g., I-16) have been in service for more than four decades with minor 
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maintenance and no or little rehabilitation.  These aging pavements are in great need 

of maintenance, rehabilitation, and reconstruction (MR&R), including actions such as 

broken slab replacement, grinding, re-sealing, etc., or full lane replacement.  Faced 

with limited funding and the increasing needs for aged JPCP MR&R, GDOT needs to 

enhance its data-driven JPCP maintenance and management program to ensure its 

highway maintenance program goals and objectives are met, including the concrete 

pavement condition evaluation system (CPACES), MR&R practices, and quantity 

estimation, all in support of JPCP MR&R planning and programming.  For this 

purpose, this research project refined the JPCP distress protocol based on different 

levels of severity (e.g., shattered slab) to support slab replacement prioritization when 

funding is limited, accurately estimated the MR&R quantity (e.g., slab replacement) 

to prevent project overruns for better budget planning, and predicted the future JPCP 

condition and MR&R needs for better planning.  An enhanced slab replacement 

quantity estimation method was developed and successfully demonstrated a 

promising capability to effectively identify distresses and accurately estimate slab 

replacement quantities using 3D laser data (see FIGURE 7.1). Results show a 

significant improvement (approximately 26%) in the accuracy of slab replacement 

quantity estimation as compared to the current windshield survey. This method is 

capable of simulating different slab replacement alternatives, e.g., replacing only the 

severe distresses (e.g., shattered slab) or all distressed slabs, and calculating 

corresponding costs. This allows OM to analyze MR&R alternatives based on 

different treatment criteria and estimate corresponding costs. 
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 RP 14-37: Next Generation Crack Sealing Planning Tool for Pavement 

Preservation  (Tsai & Wang, 2016b)  

State DOTs like GDOT have insufficient work forces to conduct routine pavement 

preservation, e.g., crack sealing.  Therefore, GDOT is considering outsourcing its 

crack sealing projects.   However, it has become a challenge to select the most cost-

effective projects and accurately estimate project costs, which have hindered the 

outsourcing effort.  To address the above issues, this research project proposes a 

systematic framework to study the cost-effectiveness of crack sealing and crack 

filling (CS/CF) and incorporate CS/CF planning into a pavement management system 

(PMS).  The proposed methodology has been evaluated using different case studies 

and has demonstrated promising results.  In this research, the crack detection and 

classification methods were carried over from the RS-GAMS.  In the next step, we 

need to work with Office of Maintenance to evaluate the implementation procedures 

and specifications. 

 

FIGURE 7.1: Example of processing slab replacement (Tsai, 2016) 
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 RP 15-11: Implementation of Automatic Sign Inventory and Pavement 

Condition Evaluation on Georgia’s Interstate Highways (Tsai et al., 2017)  

To establish a data-driven sign asset management, it is required that there be a 

complete sign inventory, including locations, types, and conditions.  The complete 

sign inventory is also very valuable to assist timely sign maintenance operations, e.g. 

determining the type of maintenance work based on sign conditions and planning 

field trip in advance based on sign locations and pictures of the signs.  Since GDOT 

has not had a comprehensive sign inventory in the past, this research project has 

established a complete and comprehensive sign inventory for interstate highways, 

covering 22,344 signs, along with their MUTCD codes, locations, and visual 

conditions, in which the enhanced sign inventory procedures developed in RS-GAMS 

have been successfully implemented (see FIGURE 7.2).  The Georgia Tech research 

team has also worked with a GDOT Area Office to conduct a pilot test of a timely 

sign maintenance program, which can be further implemented in GDOT’s working 

districts. 

 

FIGURE 7.2: Distribution of traffic signs on interstate highway (Tsai et al., 2017) 
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GDOT has collected statewide pavement condition data since 1986 based on its 

distress protocol, PACES. The current manual method works well on state-

maintained, non-interstate roadways, but it is difficult and, sometimes, prohibitive for 

surveying interstate highways due to the safety concerns caused by limited parking 

space for field engineers and high-speed, high-volume traffic. Therefore, GDOT 

needs a safer and more cost-effective method to complement its manual method of 

data collection on interstate highways.  By implementing the research outcomes in 

RS-GAMS (e.g., rutting measurement, crack detection and classification, and raveling 

detection and measurement), a comprehensive pavement condition evaluation for all 

asphalt-surfaced interstate highways in Georgia was established; it covers 1,513 miles 

of asphalt pavements on interstate highways, and rated them using streamlined 

pavement condition evaluation procedure and the 3D laser data (see FIGURE 7.3). 

 
FIGURE 7.3: COPACES ratings on interstate highways (Tsai et al., 2017) 
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 RP 15-04: Developing Georgia’s High Friction Surface Treatment (HFST) 

Program - HFST Site Characteristics (HFST-SC) Data Collection and Analysis  

HFST is an effective safety treatment method that enhances pavement friction to 

prevent run-off-road crashes.  However, it is a relatively new and expensive 

countermeasure compared to the traditional ones, such as chevrons, rumble strips, 

etc., and the process for selecting the most effective HFST sites is still evolving.  As a 

leading state in HFST implementation with millions of dollars invested (and more 

will be invested) for HFST, GDOT needs to determine the suitable sites for HFST to 

maximize the return on investment.  This ongoing research project/study is to 

enhance GDOT’s HFST program by developing a systematic site selection procedure 

and developing a procedure that establishes a location-referenced, detailed, HFST site 

characteristics information (e.g., curve radius, super-elevation, vertical grade, 

pavement texture, signage, etc.) method.  Emerging sensing technologies, including 

2D imaging, lasers, 3D LiDAR, IMU, and GPS/GIS technologies with machine 

learning and artificial intelligence will be applied and have already been 

comprehensively validated in RS-GAMS.   

 RP 15-05: Curve Identification for High Friction Surface Treatment (HFST) 

Installation Recommendation  

According to the Every Day Counts (EDC) initiative, more than 25 percent of fatal 

crashes in the United States occur on horizontal curves.  Horizontal curve 

information, including curve location, radius, the point of a curve (PC), and the point 

of a tangent (PT), is essential for curve safety analyses to identify sharp curves and 

determine appropriate countermeasures.  However, transportation agencies lack an 
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effective method for obtaining such curve information.  The objectives of this 

ongoing research project are to develop and deploy a curve identification tool based 

on the algorithms developed by the Georgia Tech research team to automatically 

extract detailed horizontal curve information, including the curve radius, PC, and PT, 

of every curve along a corridor using GPS data and GIS data that are widely available 

for transportation agencies. The research team further developed two applications to 

demonstrate the capacity of the developed tool. The extracted curve information, 

including PC and PT, is essential for recommending the starting and ending points for 

HFST installation. Also, the developed tool for curve information extraction will 

enable transportation agencies to establish a large-scale horizontal curve inventory by 

using widely available GPS data to support HFST site selection. 

 Proposed: Validating Change of Sign and Pavement Conditions and Evaluating 

Sign Retroreflectivity Condition Assessment on Georgia’s Interstate Highways 

using 3D Sensing Technology   

As a continuous effort to RP 15-11, this proposed project is to track the existence and 

condition change of signs and pavement surface distresses on interstate highways.  

Unlike a new inventory process, the second-round data collection should be faster and 

more accurate because the inventory of sign and pavement surface distresses has been 

previously done.  In the second round, the previous data can be utilized to speed up 

the data collection in the second round and to control the second-round data quality.  

The major objective of this research project is to validate the above concept and, in 

the meantime, establish a tracked condition change of signs and pavement surface 

distresses.   
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Sign retroreflectivity conditions are critical for nighttime driving safety.  In GDOT’s 

current practice, nighttime visual inspection is applied to assess sign retroreflectivity 

conditions, but this is a subjective, inaccurate, and time consuming method.  In RS-

GAMS, the Georgia Tech research team has proposed and validated a systematic 

approach to assess sign retroreflectivity conditions using mobile LiDAR.  In 

comparison to the nighttime visual inspection method, the proposed method is more 

objective, more accurate, and faster.  In this proposed research project, the mobile-

LiDAR-based sign retroreflectivity condition assessment will be implemented.  After 

all the signs on interstate highways are inventoried, the mobile LiDAR data will be 

used to assess their retroreflectivity conditions.   

3. Summary 

The research conducted in the two phases of RS-GAMS has produced a solid foundation 

for us to promote the use of CRS&SI technologies in GDOT for enhancement of 

pavement, sign, and other safety-related asset data collection, condition assessment, and 

maintenance decision-making.  The full implementation and application of the RS-

GAMS research results has the potential to pave a new way for GDOT to take advantage 

of the developed and validated 3D sensing technologies for determining the right 

projects, right timing, and right treatments for pavement and sign maintenance and safety 

improvement.  The enhanced pavement condition evaluation method will be very 

valuable and enable GDOT to meet the new pavement performance measures. 
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Chapter 8 Conclusions and Recommendations 

This research project scientifically validated the use of CRS&SI technologies, including 

3D line laser and mobile LiDAR, to improve the asphalt pavement crack classification, 

concrete pavement distress detection, and pavement marking retroreflectivity condition 

assessment.  Through the analysis of the long-term monitoring data, a comprehensive 

study has been performed on cracking and rutting deterioration.  The following 

discussion summarizes the major research findings and recommends future study 

projects. 

1. Conclusions 

The following conclusions are categorized in terms of the research topics. 

 Automatic asphalt pavement crack classification 

This research validated the performance of an automatic crack classification 

algorithm that uses 3D laser data and developed previously by the PI.  The algorithm 

is based on a multi-scale CFE model and uses crack detection results, i.e. crack maps, 

as inputs, which have been validated in RS-GAMS Phase 1.  The classification of two 

of the most commonly occurring cracks, load cracking and block cracking, defined in 

GDOT’s pavement distress survey manual, PACES, was implemented, tested, and 

validated.  The promising results demonstrate that the algorithm is capable of 

transforming raw sensing data and detected crack maps into useful decision-support 

information, including crack types, severity levels, and extents. 
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In a test on 1,069 pavement 3D laser images (each image covers a pavement section 

about 5-meters long and 4-meters wide), GDOT pavement engineers visually 

reviewed each image and established the ground truth.  Based on the comparison 

between the ground truth and the automatically classified results, the algorithm 

showed an accuracy of 92.2% on classifying load cracking at four severity levels and 

98.1% on classifying block cracking at three severity levels.  Another test was 

conducted on ten 100-ft test sections that were selected on State Route (SR) 236, SR 

275, and SR 67 in Georgia.  In each test section, GDOT pavement engineers visually 

identified the crack types, severity levels, and extents in the field, which was used as 

ground truth.  Among ten test sections, four were surveyed by accurate measurements 

using a measuring wheel, while the other six sections were surveyed by visual 

estimation following GDOT’s current survey practices.  Then, comparison was made 

on deducts derived from the automatic crack classification and the field visual survey.  

For the wheel-measured sections, the average absolute difference of total deducts was 

3.25 out of 100 (a pavement rating is between 0 and 100), and for the visually-

estimated sections, the average absolute difference was 5 out of 100.  Both 

differences were within the error tolerance based on GDOT’s current practice (5 out 

of 100).   

The validation results show that the use of 3D laser data and the corresponding 

algorithm could improve the productivity and efficiency of collecting pavement 

distress information.  Moreover, the fine-grained sensing data also opened the 

opportunity to improve existing pavement management by adding more detailed 

decision-support information that, previously, could not have been acquired.       
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 Concrete pavement distress detection 

This study validated the detection and measurements of various concrete pavement 

distresses, including cracking, faulting, spalling, and shoulder joint distress, using 3D 

laser pavement data.  The validation results demonstrate the potential of using 3D 

laser data for automatically detecting distresses in concrete pavements.  The test sites 

were selected on interstate highways I-16 and I-516. 

The validation of concrete pavement cracking detection using 3D laser data showed 

acceptable performance.  The automatic crack detection results were compared to the 

manually digitized ground truth using a buffered Hausdorff scoring method that was 

developed in RS-GAMS Phase 1.  The results showed that detection of cracks on I-

516 (mainly longitudinal cracks) is accurate and robust; however, the detection of 

cracks on I-16 (mainly transverse cracks) is not as good as on I-516.  The larger data 

acquisition interval along the driving direction, which was about 5 mm, might be the 

reason that some transverse cracks cannot be captured by 3D laser data.  In 

comparison, the transverse resolution is about 1 mm, which can better capture the 

longitudinal cracks.  Limited to the laser data resolution, hairline cracks (thinner than 

2 mm) were still challenging for automatic detection.    

The validation of concrete joint faulting measurement showed that it is very feasible 

to use 3D laser data for collecting faulting data at highway speed.  Using the 

regression-based method, the automatic faulting measurements were consistent with 

manually measured ground truth using the Georgia Faultmeter in both a well-

controlled lab test and a field test.  
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The accuracy of automatic spalling detection varied for different sizes of spalling.  

Spalling with widths greater than 90 mm can be successfully detected; the detection 

accuracy was reduced, but still acceptable for widths between 50 and 90 mm wide, 

while it was hard to detect when widths are less than 50 mm.  Though some small 

spallings were not successfully detected, they can be clearly observed on the laser 

data.  Thus, the automatic detection algorithm could be further improved to handle 

such cases. 

Since there is no dedicated application that is commercially available for shoulder 

joint distress detection, we explored the feasibility of using an automatic spalling 

detection algorithm to detect shoulder joint distress. The larger extent and depth of 

shoulder joint distress make them distinctive on laser range data and easier to detect. 

On the selected representative cases, the automatic detection results were visually 

consistent with field observations. However, it should be noted that due to the 

transverse coverage of the current pavement surface (about 4 meters), the shoulder 

area might be missed when the vehicle wanders. In addition, a specific shoulder joint 

distress detection algorithm is needed to further ensure an accurate and robust 

detection. 

 Pavement marking retroreflectivity condition assessment 

This research was to establish the correlation between the retroreflectivity measured 

by handheld retroreflectometers and the retro-intensity acquired from a LiDAR point 

cloud.  Establishing a reliable correlation is the key step for assessing pavement 

marking retroreflectivity conditions using a mobile LiDAR.  In this preliminary 
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study, thermoplastic and waterborne paint, which are the most commonly used 

pavement marking materials, were tested.  Test sites were selected on Ferst Drive, 

Hemphill Avenue, and 17th Street on/near the Georgia Tech campus. 

It was discovered that the retro-intensity values acquired from mobile LiDAR are not 

sensitive to ambient temperatures, with an average standard deviation less than 

0.0041. The retro-intensity acquired from mobile LiDAR held good repeatability on 

the tested thermoplastic and waterborne materials with an average standard deviation 

of 0.0044.  

There was an exponential correlation between retroreflectivity and retro-intensity 

with an R-square of 0.9525 for thermoplastic and 0.9267 for waterborne paint.  The 

correlation between retroreflectivity and retro-intensity might be sensitive to different 

bead formulas of the pavement marking material.  Separate correlation curves might 

be needed not only for different pavement marking material category, e.g. 

thermoplastic, waterborne, etc., but also for different bead formulas in the same 

material category.  Based on the correlation results, a preliminary retro-intensity 

threshold corresponding to the minimum retroreflectivity (100 mcd/m2/lux) defined in 

the MUTCD could be defined as 0.4263, with a 95% confidence interval ranging 

from 0.4035 to 0.4505 for thermoplastic and 0.3521, with a 95% confidence interval 

ranging from 0.2973 to 0.4264.  Using the established correlations, a mobile LiDAR-

based pavement marking retroreflectivity condition assessment method can be further 

developed. 
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 Long-term monitoring of crack deterioration 

This research studied pavement deterioration behavior over time using long-term 

monitoring of 3D laser data.  A detailed-level representation of crack information, 

including length, width, orientation/direction, position/location, intensity, pattern, etc. 

that are derived using 3D laser data, crack detection algorithms, and the multi-scale 

CFE model, was applied to study the temporal crack deterioration behavior.  The 

results showed that it could potentially be used to support the following applications: 

1) the fundamental study of pavement mechanistic and pavement deterioration 

behavior, 2) validation of current pavement design methods and development of new 

design concepts and methods, 3) determination of adequate treatment methods and 

strategies based on pavement distress characteristics and their deterioration behaviors, 

4) development of accurate and reliable forecasting models, and 5) development of 

cost-effective pavement management operations/practices, like intelligent crack 

sealing planning. Compared to the frequently used lab simulation data or well-

controlled experimental data (e.g. AASHO road test), the in-service pavement data 

used in this study represent true crack deterioration mechanisms and enables the 

ability to explicitly connect pavement condition deterioration with the real-world 

factors that cause it. While it is not feasible to comprehensively cover the entire field 

of research, this study is a concrete first step and is believed to be transformative in 

changing the way researchers have approached sensing data based infrastructure 

condition monitoring and risk assessment. 
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 Long-term monitoring of rutting deterioration 

This research characterized the 3D rut shape and analyzed its deterioration behaviors 

at multiple scales using long-term pavement 3D laser data.  Rut parameters, including 

transverse profile-based parameters, longitudinal parameters, and temporal 

parameters were defined and proposed.  Descriptive statistics and 2D and 3D 

visualizations were used to analyze the deterioration behaviors of rutting.   

Transverse profile-based rut parameters, including rut depth, rut cross-sectional area, 

percent deformation, and total absolute distortion, show good correlation among each 

other and provide consistent information about the conditions of ruts.  Longitudinal 

parameters also showed similar trends as the aforementioned parameters, indicating 

that ruts not only grow in depth and area but also longitudinally in length and volume.  

Temporal parameters provide a direct means to quantify the deterioration of rutting.  

These parameters can be very useful, especially when the rate of deterioration is high.  

The multi-scale analysis results show that seasonal variations can have appreciable 

effect on the deterioration of ruts.  Temporal parameters derived from a shorter period 

(e.g., a few months) can be affected by the seasonal variation.  This finding suggests 

that, for different deterioration analysis applications, different analysis periods should 

be applied in order to obtain consistent results.  The comparison among three 

different routes showed that traffic and roadway characteristics also play an important 

role in the deterioration of ruts.  Other factors, such as the age and design of the 

pavement, can also contribute to the actual deterioration behavior of ruts.  2D and 3D 

visualization of ruts at the individual level shows the importance and benefits of 

having registered long-term 3D pavement data.  Details of how ruts deteriorate, e.g., 
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the development of dual-wheel shaped ruts and the growth in rut length and volume, 

were able to be identified in the selected sections.  This information can further 

support the diagnosis of rutting and inform data-drive maintenance decisions.   

2. Recommendations 

The following suggest future research for implementation:  

 With the promising results from the automatic asphalt pavement crack classification 

for load cracking and block cracking, it is recommended that automatic classification 

be extended to other types of distresses defined in GDOT's pavement distress manual.  

In addition, the algorithms can be easily extended to other crack survey protocols 

used by different state highway agencies because of the flexibility provided by the 

crack CFE model.      

 The validation results for automatic concrete pavement faulting measurements 

showed very good consistency with manual measurements made with a Georgia 

Faultmeter.  A large-scale pilot study with a state DOT, e.g. GDOT, to automate the 

network-level faulting measurements is suggested.  This can significantly improve 

productivity, data accuracy, and data coverage. 

 The concrete pavement crack detection shows promising results.  However, it is 

difficult to detect hairline, transverse cracks due to the relatively coarser data 

resolution in the driving direction using the current 3D laser device.  Thus, to capture 

hairline cracks, the data capture frequency and resolution of a 3D laser device needs 

to be further improved.  In addition, automated crack evaluation for concrete 
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pavements, automatic crack classification algorithms need to be developed; it can be 

based on the work we have done for asphalt pavements.  

 New algorithms need to be developed because the automatic detection for concrete 

spalling doesn’t work well on spalling widths less than 50 mm.  In addition, new 

algorithms are needed for automatic shoulder joint distress detection.   

 The pavement marking validation results indicate that pavement marking 

retroreflectivity conditions can be measured and evaluated using mobile LiDAR that 

can be operated at highway speed.  However, the testing samples in this research 

project are limited.  It is suggested that large-scale testing on more marking materials 

be conducted before it is implemented. 


